Amyotrophic Lateral Sclerosis (ALS): Familial ALS, Genetic Mutation, and Possible Gene Therapy Cure
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5668Keywords:
ALS, fALS, Mutation, Gene (RNA/DNA), Protein, NeuronAbstract
In our world today, many neurodegenerative diseases are being studied and thoroughly evaluated. Scientists attempt to understand these diseases to a greater extent every day, researching possible causes and cures. In particular, a disease called Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that still elicits uncertainty, with many underlying causes and no current cure. Those with ALS experience motor neuron degeneration, the root source of ALS. This degeneration of motor neurons leads to paralysis, or the inability to move due to a loss of muscle function by impaired neural messaging. In a specific branch of ALS, familial ALS (fALS), motor neuron degeneration is caused by specific genetic mutations in an individual that were passed on by hereditary nature. This research identifies four genes that hold the genetic mutations responsible for fALS: SOD1, TARDBP, FUS, and C9orf72. Of these many genes, this research identified their corresponding mutational contributions to motor neuron degeneration like oxidative stress, protein aggregation, and other causes. Along with the analysis of the problematic genetic mutations, this study sheds light on next generation sequencing (NGS) as a way to efficiently scan for genetic mutations, as well as CRISPR-Cas9 gene therapy as a possible cure for fALS in the future of neurodegenerative study. Overall, this research aims to narrow in on fALS and demonstrates a comprehensive analysis of the specific gene mutations that take place, the significance of each in the overall progression of ALS and motor neuron degeneration, and future possibilities for next-generation sequencing and gene therapy.
Downloads
References or Bibliography
Huai, J., & Zhang, Z. (2019). Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00527
Bunton-Stasyshyn, R. K. A., Saccon, R. A., Fratta, P., & Fisher, E. M. C. (2014). SOD1 Function and Its Implications for Amyotrophic Lateral Sclerosis Pathology. The Neuroscientist, 21(5), 519–529. https://doi.org/10.1177/1073858414561795
Buettner, G. R. (2011). Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti-Cancer Agents in Medicinal Chemistry, 11(4), 341–346. https://doi.org/10.2174/187152011795677544
Pansarasa, O., Bordoni, M., Diamanti, L., Sproviero, D., Gagliardi, S., & Cereda, C. (2018). SOD1 in Amyotrophic Lateral Sclerosis: “Ambivalent” Behavior Connected to the Disease. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051345
Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative Stress: a Key Modulator in Neurodegenerative Diseases. Molecules, 24(8), 1583.
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1–31. https://doi.org/10.1155/2014/360438
Suk, T. R., & Rousseaux, M. W. C. (2020). The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 15(1). https://doi.org/10.1186/s13024-020-00397-1
Pesiridis, G. S., Lee, V. M.-Y. ., & Trojanowski, J. Q. (2009). Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Human Molecular Genetics, 18(R2), R156–R162. https://doi.org/10.1093/hmg/ddp303
Zanini, G., Selleri, V., Nasi, M., De Gaetano, A., Martinelli, I., Gianferrari, G., Lofaro, F. D., Boraldi, F., Mandrioli, J., & Pinti, M. (2022). Mitochondrial and Endoplasmic Reticulum Alterations in a Case of Amyotrophic Lateral Sclerosis Caused by TDP-43 A382T Mutation. International Journal of Molecular Sciences, 23(19), 11881. https://doi.org/10.3390/ijms231911881
Wood, A., Gurfinkel, Y., Polain, N., Lamont, W., & Rea, S. L. (2021). Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. International Journal of Molecular Sciences, 22(9), 4705. https://doi.org/10.3390/ijms22094705
Shang, Y., & Huang, E. J. (2016). Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Research, 1647, 65–78. https://doi.org/10.1016/j.brainres.2016.03.036
Schmitz, A., Pinheiro Marques, J., Oertig, I., Maharjan, N., & Saxena, S. (2021). Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Frontiers in Cellular Neuroscience, 15. https://doi.org/10.3389/fncel.2021.637548
Freibaum, B. D., & Taylor, J. P. (2017). The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Frontiers in Molecular Neuroscience, 10. https://doi.org/10.3389/fnmol.2017.00035
May, S., Hornburg, D., Schludi, M. H., Arzberger, T., Rentzsch, K., Schwenk, B. M., Grässer, F. A., Mori, K., Kremmer, E., Banzhaf-Strathmann, J., Mann, M., Meissner, F., & Edbauer, D. (2014). C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathologica, 128(4), 485–503. https://doi.org/10.1007/s00401-014-1329-4
Xu, W., & Xu, J. (2018). C9orf72 Dipeptide Repeats Cause Selective Neurodegeneration and Cell-Autonomous Excitotoxicity in Drosophila Glutamatergic Neurons. The Journal of Neuroscience, 38(35), 7741–7752. https://doi.org/10.1523/jneurosci.0908-18.2018
Ryan, S., Rollinson, S., Hobbs, E., & Pickering-Brown, S. (2022). C9orf72 dipeptides disrupt the nucleocytoplasmic transport machinery and cause TDP-43 mislocalisation to the cytoplasm. Scientific Reports, 12(1), 4799. https://doi.org/10.1038/s41598-022-08724-w
Jensen, B. K., Schuldi, M. H., McAvoy, K., Russell, K. A., Boehringer, A., Curran, B. M., Krishnamurthy, K., Wen, X., Westergard, T., Ma, L., Haeusler, A. R., Edbauer, D., Pasinelli, P., & Trotti, D. (2020). Synaptic dysfunction induced by glycine‐alanine dipeptides in C9orf72‐ ALS / FTD is rescued by SV 2 replenishment. EMBO Molecular Medicine, 12(5). https://doi.org/10.15252/emmm.201910722
Pecoraro, V., Mandrioli, J., Carone, C., Chiò, A., Traynor, B. J., & Trenti, T. (2020). The NGS technology for the identification of genes associated with the ALS. A systematic review. European Journal of Clinical Investigation, 50(5). https://doi.org/10.1111/eci.13228
Naso, M. F., Tomkowicz, B., Perry, W. L., & Strohl, W. R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5
Xu, C. L., Ruan, M. Z. C., Mahajan, V. B., & Tsang, S. H. (2019). Viral Delivery Systems for CRISPR. Viruses, 11(1), 28. https://doi.org/10.3390/v11010028
Fang, T., Je, G., Pacut, P., Keyhanian, K., Gao, J., & Ghasemi, M. (2022). Gene Therapy in Amyotrophic Lateral Sclerosis. Cells, 11(13), 2066. https://doi.org/10.3390/cells11132066
Published
How to Cite
Issue
Section
Copyright (c) 2023 Soham Deshpande; Mrs. Jothsna Kethar, Dr. Rajagopal Appavu (Ph.D)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.