Biomarkers and Inflammatory Pathways in Diabetes Mellitus Progression

Authors

  • Shristi Roy Woodward Academy

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5607

Keywords:

Diabetes, Inflammation, Biomarkers, Interleukin, Insulin Resistance

Abstract

With the rapidly increasing prevalence of diabetes in the global population, an early diagnosis of both type 1 diabetes mellitus and type 2 diabetes mellitus is critical to preventing long-term complications. Two potential components of unlocking a consistent early diagnosis of diabetes are understanding biological inflammatory pathways and identifying more sensitive biomarkers of diabetes. Novel biomarkers, such as interleukin, assist in monitoring the destruction of pancreatic beta cells, while inflammatory pathways can help explain the underpinnings of the insulin resistance found in both types of diabetes. In addition, research into 5-methoxytryptamine and 20-Hydroxy-leukotriene B4 would prove useful as a result of their heightened levels in patients with normal glucose levels.

Downloads

Download data is not yet available.

References or Bibliography

eferences:

Barnard-Kelly, K. D., & Cherñavvsky, D. (2020). Social inequality and diabetes: A commentary. Diabetes Therapy, 11(4), 803–811. DOI: 10.1007/s13300-020-00791-4

Spanakis, E. K., & Golden, S. H. (2013). Race/ethnic difference in diabetes and diabetic complications. Current Diabetes Reports, 13(6), 10.1007/s11892-013-0421–0429. DOI: 10.1007/s11892-013-0421-9

Bullard, K. M., Cowie, C. C., Lessem, S. E., et al. (2018). Prevalence of diagnosed diabetes in adults by diabetes type—United States, 2016. Morbidity and Mortality Weekly Report, 67(12), 359–361. DOI: 10.15585/mmwr.mm6712a2

Lee, Y.-H., Armstrong, E. J., Kim, G., et al. (2015). Undiagnosed diabetes is prevalent in younger adults and associated with a higher risk cardiometabolic profile compared to diagnosed diabetes. American Heart Journal, 170(4), 760-769.e2. DOI: 10.1016/j.ahj.2015.07.024

Kautzky-Willer, A., Harreiter, J., & Pacini, G. (2016). Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocrine Reviews, 37(3), 278–316. DOI: 10.1210/er.2015-1137

DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. Lancet (London, England), 391(10138), 2449–2462. DOI: 10.1016/S0140-6736(18)31320-5

Leighton, E., Sainsbury, C. A., & Jones, G. C. (2017). A practical review of c-peptide testing in diabetes. Diabetes Therapy, 8(3), 475–487. DOI: 10.1007/s13300-017-0265-4

Zeng, H., Tong, R., Tong, W., et al. (2017). Metabolic Biomarkers for Prognostic Prediction of Pre-diabetes: Results from a longitudinal cohort study. Scientific Reports, 7, 6575. DOI: 10.1038/s41598-017-06309-6

Dorcely, B., Katz, K., Jagannathan, R., et al. (2017). Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 10, 345–361. DOI: 10.2147/DMSO.S100074

Alfadul, H., Sabico, S., & Al-Daghri, N. M. (2022). The role of interleukin-1β in type 2 diabetes mellitus: A systematic review and meta-analysis. Frontiers in Endocrinology, 13. Read the article

Zhao, G., Dharmadhikari, G., Maedler, K., & Meyer-Hermann, M. (2014). Possible role of interleukin-1β in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLoS Computational Biology, 10(8), e1003798. DOI: 10.1371/journal.pcbi.1003798

Arkan, M. C., Hevener, A. L., Greten, F. R., et al. (2005). IKK-beta links inflammation to obesity-induced insulin resistance. Nature Medicine, 11(2), 191–198. DOI: 10.1038/nm1185

Ren, K., & Torres, R. (2009). Role of interleukin-1β during pain and inflammation. Brain Research Reviews, 60(1), 57–64. DOI: 10.1016/j.brainresrev.2008.12.020

Tan, D.-X., Hardeland, R., Back, K., et al. (2016). On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: Comparisons across species. Journal of Pineal Research, 61(1), 27–40. DOI: 10.1111/jpi.12336

-hydroxy leukotriene b4(CAS 79516-82-8). (n.d.). Retrieved February 12, 2023, from https://www.caymanchem.com/product/20190

PubChem. (n.d.). 20-hydroxy-leukotriene b4. Retrieved February 12, 2023, from https://pubchem.ncbi.nlm.nih.gov/compound/5280745

Kim, T.-K., Kleszczyński, K., Janjetovic, Z., et al. (2013). Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. The FASEB Journal, 27(7), 2742–2755. DOI: 10.1096/fj.12-224691

Hurrle, S., & Hsu, W. H. (2017). The etiology of oxidative stress in insulin resistance. Biomedical Journal, 40(5), 257–262. DOI: 10.1016/j.bj.2017.06.007

Raghav, A., Mishra, B. K., Tomar, R., et al. (2021). Prospective role of n-acetyl-5-methoxytryptamine and 5-hydroxytryptophan in β-cell health and improved insulin sensitivity in hyperglycemia. Chronobiology in Medicine, 3(1), 4–7. DOI: 10.33069/cim.2021.0001

Garaulet, M., Qian, J., Florez, J. C., et al. (2020). Melatonin effects on glucose metabolism: Time to unlock the controversy. Trends in Endocrinology and Metabolism: TEM, 31(3), 192–204. DOI: 10.1016/j.tem.2019.11.011

Sharma, S., Singh, H., Ahmad, N., et al. (2015). The role of melatonin in diabetes: Therapeutic implications. Archives of Endocrinology and Metabolism, 59(5), 391–399. DOI: 10.1590/2359-3997000000098

Tsalamandris, S., Antonopoulos, A. S., Oikonomou, E., et al. (2019). The role of inflammation in diabetes: Current concepts and future perspectives. European Cardiology Review, 14(1), 50–59. DOI: 10.15420/ecr.2018.33.1

Xia, Z., Zhou, X., Li, J., et al. (2019). Multiple-omics techniques reveal the role of glycerophospholipid metabolic pathway in the response of saccharomyces cerevisiae against hypoxic stress. Frontiers in Microbiology, 10, 1398. DOI: 10.3389/fmicb.2019.01398

Chang, W., Hatch, G. M., Wang, Y., et al. (2019). The relationship between phospholipids and insulin resistance: From clinical to experimental studies. Journal of Cellular and Molecular Medicine, 23(2), 702–710. DOI: 10.1111/jcmm.13984

Nakatsuka, A., Matsuyama, M., Yamaguchi, S., et al. (2016). Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis. Scientific Reports, 6(1), 21721. DOI: 10.1038/srep21721

Selfdecode. (n.d.). Retrieved February 12, 2023, from https://selfdecode.com/app/article/obesity-diabetes-pemt/#do-pemt-variants-correlate-with-obesity-and-diabetes?

Vance, D. E. (2013). Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochimica Et Biophysica Acta, 1831(3), 626–632. DOI: 10.1016/j.bbalip.2012.07.017

Wu, G., Zhang, L., Li, T., et al. (2013). Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action. The Journal of Biological Chemistry, 288(2), 837–847. DOI: 10.1074/jbc.M112.415117

Xu, H., Li, W., Huang, L., et al. (2023). Phosphoethanolamine cytidyltransferase ameliorates mitochondrial function and apoptosis in hepatocytes in T2DM in vitro. Journal of Lipid Research, 0(0). DOI: 10.1016/j.jlr.2023.100337

Bloomgarden, Z. (2018). Diabetes and branched-chain amino acids: What is the link? Journal of Diabetes, 10(5), 350–352. DOI: 10.1111/1753-0407.12645

Nestel, P. J. (1982). Apoprotein metabolism in human obesity. International Journal of Obesity, 6 Suppl 1, 105–109.

Homo sapiens lipoate biosynthesis and incorporation. (n.d.). HumanCyc

Martins-Noguerol, R., Acket, S., Troncoso-Ponce, M. A., et al. (2021). Characterization of helianthus annuus lipoic acid biosynthesis: The mitochondrial octanoyltransferase and lipoyl synthase enzyme system. Frontiers in Plant Science, 12. Read the article

MetaCyc lipoate biosynthesis and incorporation I. (n.d.). MetaCyc

Marquet, A., Bui, B. T., & Florentin, D. (2001). Biosynthesis of biotin and lipoic acid. Vitamins and Hormones, 61, 51–101. DOI: 10.1016/s0083-6729(01)61002-1

Booker, S. J. (2004). Unraveling the pathway of lipoic acid biosynthesis. Chemistry & Biology, 11(1), 10–12. DOI: 10.1016/j.chembiol.2004.01.002

Kaneto, H., Katakami, N., Matsuhisa, M., & Matsuoka, T. (2010). Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators of Inflammation, 2010, 453892. DOI: 10.1155/2010/453892

Golbidi, S., Badran, M., & Laher, I. (2011). Diabetes and alpha lipoic acid. Frontiers in Pharmacology, 2, 69. DOI: 10.3389/fphar.2011.00069

Christensen, Q. H., & Cronan, J. E. (2010). Lipoic acid synthesis: A new family of octanoyltransferases generally annotated as lipoate protein ligases. Biochemistry, 49(46), 10024–10036. DOI: 10.1021/bi101215f

Published

11-30-2023

How to Cite

Roy, S. (2023). Biomarkers and Inflammatory Pathways in Diabetes Mellitus Progression. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5607

Issue

Section

HS Review Projects