PET microplastics as a Grand Challenge: Effects of PET Microplastics on Model Organisms and Exploring Detection and Degradation Strategies for Environmental Remediation

Authors

  • Sidhya Pathak TJHSST

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5554

Keywords:

Microplastics, CNS

Abstract

Despite the growing production of plastics, there is a serious gap in knowledge on its effect on human health. Microplastics are damaging to locomotor behavior, the gut-brain axis, and other functions of the central nervous system. In this review, we look at the evolution of microplastic detection methods, adverse effects associated with exposure to Polyethylene Terephthalic microplastics, or PET-MP, and the potential of chemical recycling as an efficient and beneficial recycling process. We found that, although detection methods have improved in terms of accuracy, there is still much to be optimized, such as tedious processes, long detection times, and lack of versatility in microplastics that can be detected. We found that PET microplastics significantly increased spontaneous activity in Drosophila Melanogaster and negatively affected gut microbiota, which can potentially impair learning and memory. There are still major gaps in understanding the effect of PET microplastics on organisms, as most research is catered towards polyethylene microplastics. Lastly, we looked at the presence of PET-MP in terms of a Grand Challenge and looked at potential solutions for remediation. We found that methods such as glycolysis and hydrolysis, which use chemical agents to depolymerize PET-MP as a way of recycling, hold lots of potential for environmental remediation. 

Downloads

Download data is not yet available.

References or Bibliography

Araujo, C. F., Nolasco, M. M., Ribeiro, A. M.P., & Ribeiro-Claro, P. J. (n.d.). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research. https://doi.org/10.1016/j.watres.2018.05.060

Bardoquillo, E. I., Firman, J. M., Montecastro, D., & Basilio, A. (n.d.). Chemical recycling of waste polyethylene terephthalate (PET) bottles via recovery and polymerization of terephthalic acid (TPA) and ethylene glycol (EG). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.160

Barredo, A., Asueta, A., Amundarain, I., Leivar, J., Miguel-Fernández, R., Arnaiz, S., Epelde, E., López-Fonseca, R., & Gutiérrez-Ortiz, J. I. (n.d.). Chemical recycling of monolayer PET tray waste by alkaline hydrolysis. The Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2023.109823

Chen, H., Hua, X., Li, H., Wang, C., Dang, Y., Ding, P., & Yu, Y. (n.d.). Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129642

Crippa, M., & Morico, B. (n.d.). Studies in Surface Science and Catalysis. https://doi.org/10.1016/B978-0-444-64337-7.00012-4

Dahleh, M. M. M., & Prigol, M. (2023). The role of Drosophila melanogaster in neurotoxicology studies: Responses to different harmful substances. Advances in Neurotoxicology. https://doi.org/10.1016/bs.ant.2023.01.003

Fournier, E., Leveque, M., Ruiz, P., Ratel, J., Durif, C., Chalancon, S., Amiard, F., Edely, M., Bezirard, V., Gaultier, E., Lamas, B., Houdeau, E., Lagarde, F., Engel, E., Etienne-Mesmin, L., Blanquet-Diot, S., & Mercier-Bonin, M. (n.d.). Microplastics: What happens in the human digestive tract? First evidences in adults using in vitro gut models. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2022.130010

Ghosal, K., & Nayak, C. (n.d.). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions – hope vs. hype. Royal Society of Chemistry. https://doi.org/10.1039/D1MA01112J

Huang, Z., Hu, B., & Wang, H. (2023). Analytical methods for microplastics in the environment: a review. Environment Chemistry Letters. https://doi.org/10.1007/s10311-022-01525-7

Jie Shen, Xu, Y., Liang, B., Zhang, D., Li, Y., Tang, H., & Zhong, L. (2021). Effects of PET microplastics on the physiology of Drosophila. Chemosphere, 283. https://doi.org/10.1016/j.chemosphere.2021.131289

Kannan, K., & Vimalkumar, K. (n.d.). A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2021.724989

Lee, C.-W., Hsu, L.-F., Wu, I.-L., Wang, Y.-L., Chen, W.-C., Liu, Y.-J., Yang, L.-T., Tan, C.-L., Luo, Y.-H., Wang, C.-C., Chiu, H.-W., Yang, T. C.-K., Lin, Y.-Y., Chang, H.-A., Chiang, Y.-C., Chen, C.-H., Lee, M.-H., Peng, K.-T., & Huang, C. C.-Y. (n.d.). Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. Journal of Hazardous Material. https://doi.org/10.1016/j.jhazmat.2022.128431

Liu, H.-P., Lin, W.-Y., Cheng, J., Chen, M.-Y., Chuang, T.-N., Dong, J.-C., & Liu, C.-H. (2022). Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila. Environmental Pollution, 292. https://doi.org/10.1016/j.envpol.2021.118455

Martin, C. R., Osadchiy, V., Kalani, A., & Mayer, E. A. (n.d.). The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. https://doi.org/10.1016/j.jcmgh.2018.04.003

Matthews, S., Xu, E. G., Dumont, E. R., Meola, V., Pikuda, O., Cheong, R. S., Tutenkj, N., Guo, M., Tahara, R., & Larsson, H. C. E. (2021). Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster. Environmental Science Nano, 8(1). https://doi.org/10.1039/d0en00942c

Nisticò, R. (n.d.). Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing. https://doi.org/10.1016/j.polymertesting.2020.106707

Padervand, M., Lichtfouse, E., Robert, D., & Wang, C. (n.d.). Removal of microplastics from the environment. A review. Environmental Chemistry Letters. http://dx.doi.org/10.1007/s10311-020-00983-1

Padhan, R. K., & Sreeram, A. (n.d.). Chemical Depolymerization of PET Bottles via Combined Chemolysis Methods. Plastics Design Library. https://doi.org/10.1016/B978-0-12-811361-5.00007-9

Pitt, J. A., Trevisan, R., Massarsky, A., Kozal, J. S., Levin, E. D., & Di Giulioa, R. T. (n.d.). Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene. Science of The Total Environment. https://doi.org/10.1016%2Fj.scitotenv.2018.06.186

Shamskhany, A., Li, Z., Patel, P., & Karimpour, S. (n.d.). Evidence of Microplastic Size Impact on Mobility and Transport in the Marine Environment: A Review and Synthesis of Recent Research. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2021.760649

Shen, J., Liang, B., Ding, S., Zhang, D., Li, Y., & Tang, H. (n.d.). Sex Specic Effects of PET-MPs On Drosophila Lifespan. Research Square. https://doi.org/10.21203/rs.3.rs-857725/v1

Shen, J., Liang, B., & Jin, H. (n.d.). 10.1016/j.trac.2023.117130. Trends in Analytical Chemistry. https://doi.org/10.1016/j.trac.2023.117130

Sorolla-Rosario, D., Llorca-Porcel, J., Pérez-Martínez, M., Lozano-Castelló, D., & Bueno-López, A. (2023). Microplastics' analysis in water: Easy handling of samples by a new Thermal Extraction Desorption-Gas Chromatography-Mass Spectrometry (TED-GC/MS) methodology. Tantla.

Välikangas, A. (n.d.). The uses of grand challenges in research policy and university management: something for everyone. Journal of Responsible Innovation. https://doi.org/10.1080/23299460.2022.2040870

Ye, Y., Yu, K., & Zhao, Y. (2022). The development and application of advanced analytical methods in microplastics contamination detection: A critical review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.151851

Zangana, K. H., Fernandez, A., & Holmes, J. D. (n.d.). Simplified, fast, and efficient microwave assisted chemical recycling of poly (ethylene terephthalate) waste. Materials Today: Communications. https://doi.org/10.1016/j.mtcomm.2022.104588

Zhang, Y., Lemos, B., Wolosker, M. B., Zhao, Y., & Ren, H. (2020). Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Science of The Total Environment, 774. https://doi.org/10.1016/j.scitotenv.2020.140979

Zhu, L., Xie, C., Chen, L., Dai, X., Zhou, Y., Pan, H., & Tian, K. (n.d.). Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2023.114818

Zink, D., Chuah, J., & Ying, J. (n.d.). Assessing Toxicity with Human Cell-Based In Vitro Methods. Trends in Molecular Medicine. https://doi.org/10.1016/j.molmed.2020.01.008

Published

11-30-2023

How to Cite

Pathak, S. (2023). PET microplastics as a Grand Challenge: Effects of PET Microplastics on Model Organisms and Exploring Detection and Degradation Strategies for Environmental Remediation. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5554

Issue

Section

HS Review Articles