Comparison Of 3D Structures Generated by AlphaFold2 to Experimental Structures In Oncogenic Proteins
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5532Keywords:
Artificial Intelligence, Machine Learning, AlphaFold2, Oncogenic Proteins, Convolutional Neural NetworkAbstract
AlphaFold2 is a machine-learning algorithm that can predict the 3D structure of proteins. 3D protein structures are essential for understanding the function of oncogenic proteins, which can potentially cause cancer. In this study, we compared the structure of 26 oncogenic proteins found experimentally and computationally using AlphaFold2. We used RMSD values to measure how well the AlphaFold2 model fit the experimentally derived protein structures. RMSD values for the oncogenic proteins ranged from 0.204 Å to 1.980 Å with an average of 0.633 Å, showing that AlphaFold2 was a promising tool for predicting the 3D structure of oncogenic proteins. However, we noted that AlphaFold2 has limitations in predicting the structure of highly disordered proteins, proteins with multiple conformations, mutated and artificial proteins, and proteins that are not well-studied experimentally. Our study suggests that AlphaFold2 could be used to identify new targets for cancer treatment and design drugs that can fit into the binding sites of oncogenic proteins. We also hypothesize that AlphaFold2 could be improved by increasing the amount of data available for training, improving the resolution of current data, and using it in conjunction with other protein structure models. We believe that AlphaFold2 is a powerful tool for predicting the structure of oncogenic proteins. Despite the current limitations, we are optimistic that future research will improve AlphaFold2, finding use in cancer research.
Downloads
References or Bibliography
Institute of Medicine (US) Committee on Military Nutrition Research, Poos, M. I., Costello, R., & Carlson-Newberry, S. J. (1999). Committee on Military Nutrition Research: Activity Report. National Academies Press (US)
Dunham, B., & Ganapathiraju, M. K. (2021). Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms. Molecules (Basel, Switzerland), 27(1), 41. https://doi.org/10.3390/molecules27010041
Newberry, R. W., & Raines, R. T. (2019). Secondary Forces in Protein Folding. ACS chemical biology, 14(8), 1677–1686. https://doi.org/10.1021/acschembio.9b00339
Kuhlman, B., & Bradley, P. (2019). Advances in protein structure prediction and design. Nature reviews. Molecular cell biology, 20(11), 681–697. https://doi.org/10.1038/s41580-019-0163-x
Konc, J., & Janežič, D. (2022). Protein binding sites for drug design. Biophysical reviews, 14(6), 1413–1421. https://doi.org/10.1007/s12551-022-01028-3
Bergquist, S., Otten, T., & Sarich, N. (2020). COVID-19 pandemic in the United States. Health policy and technology, 9(4), 623–638. https://doi.org/10.1016/j.hlpt.2020.08.007
Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., & Wakefield, J. (2023). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942), 130–137. https://doi.org/10.1038/s41586-022-05522-2
Thorn, C. R., Sharma, D., Combs, R., Bhujbal, S., Romine, J., Zheng, X., Sunasara, K., & Badkar, A. (2022). The journey of a lifetime - development of Pfizer's COVID-19 vaccine. Current opinion in biotechnology, 78, 102803. https://doi.org/10.1016/j.copbio.2022.102803
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., COVID-19 Genomics UK (COG-UK) Consortium, Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature reviews. Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0
Dill, K. A., Ozkan, S. B., Shell, M. S., & Weikl, T. R. (2008). The protein folding problem. Annual review of biophysics, 37, 289–316. https://doi.org/10.1146/annurev.biophys.37.092707.153558
Anfinsen C. B. (1973). Principles that govern the folding of protein chains. Science (New York, N.Y.), 181(4096), 223–230. https://doi.org/10.1126/science.181.4096.223
Kaffe-Abramovich, T., & Unger, R. (1998). A simple model for evolution of proteins towards the global minimum of free energy. Folding & design, 3(5), 389–399. https://doi.org/10.1016/S1359-0278(98)00052-2
Li, J., Hou, C., Ma, X., Guo, S., Zhang, H., Shi, L., Liao, C., Zheng, B., Ye, L., Yang, L., & He, X. (2021). Entropy-Enthalpy Compensations Fold Proteins in Precise Ways. International journal of molecular sciences, 22(17), 9653. https://doi.org/10.3390/ijms22179653
Sorokina, I., Mushegian, A. R., & Koonin, E. V. (2022). Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?. International journal of molecular sciences, 23(1), 521. https://doi.org/10.3390/ijms23010521
Dobson C. M. (2019). Biophysical Techniques in Structural Biology. Annual review of biochemistry, 88, 25–33. https://doi.org/10.1146/annurev-biochem-013118-111947
Smyth, M. S., & Martin, J. H. (2000). x ray crystallography. Molecular pathology: MP, 53(1), 8–14. https://doi.org/10.1136/mp.53.1.8
Marion D. (2013). An introduction to biological NMR spectroscopy. Molecular & cellular proteomics : MCP, 12(11), 3006–3025. https://doi.org/10.1074/mcp.O113.030239
Murata, K., & Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et biophysica acta. General subjects, 1862(2), 324–334. https://doi.org/10.1016/j.bbagen.2017.07.020
Holcomb, J., Spellmon, N., Zhang, Y., Doughan, M., Li, C., & Yang, Z. (2017). Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS biophysics, 4(4), 557–575. https://doi.org/10.3934/biophy.2017.4.557
AlQuraishi M. (2021). Machine learning in protein structure prediction. Current opinion in chemical biology, 65, 1–8. https://doi.org/10.1016/j.cbpa.2021.04.005
Meller, A., Ward, M., Borowsky, J., Kshirsagar, M., Lotthammer, J. M., Oviedo, F., Ferres, J. L., & Bowman, G. R. (2023). Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network. Nature communications, 14(1), 1177. https://doi.org/10.1038/s41467-023-36699-3
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
Mihaly Varadi and others, AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models, Nucleic Acids Research, Volume 50, Issue D1, 7 January 2022, Pages D439–D444, https://doi.org/10.1093/nar/gkab1061
Marcu, Ş.-B., Tăbîrcă, S., & Tangney, M. (2022). An overview of Alphafold’s breakthrough. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.875587
Bouatta, N., Sorger, P., & AlQuraishi, M. (2021). Protein structure prediction by AlphaFold2: are attention and symmetries all you need?. Acta crystallographica. Section D, Structural biology, 77(Pt 8), 982–991. https://doi.org/10.1107/S2059798321007531
Higgins M. K. (2021). Can We AlphaFold Our Way Out of the Next Pandemic?. Journal of molecular biology, 433(20), 167093. https://doi.org/10.1016/j.jmb.2021.167093
Matthews, H. K., Bertoli, C., & de Bruin, R. A. M. (2022). Cell cycle control in cancer. Nature reviews. Molecular cell biology, 23(1), 74–88. https://doi.org/10.1038/s41580-021-00404-3
Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a cancer journal for clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
Ershler W. B. (2003). Cancer: a disease of the elderly. The journal of supportive oncology, 1(4 Suppl 2), 5–10.
Disis, M. L., & Cheever, M. A. (1996). Oncogenic proteins as tumor antigens. Current opinion in immunology, 8(5), 637–642. https://doi.org/10.1016/s0952-7915(96)80079-3
Williams, G. H., & Stoeber, K. (2012). The cell cycle and cancer. The Journal of pathology, 226(2), 352–364. https://doi.org/10.1002/path.3022
Yip, H. Y. K., & Papa, A. (2021). Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments. Cells, 10(3), 659. https://doi.org/10.3390/cells10030659
Weinberg R. A. (1994). Oncogenes and tumor suppressor genes. CA: a cancer journal for clinicians, 44(3), 160–170. https://doi.org/10.3322/canjclin.44.3.160
Rudiman, R., Wijaya, A., Sribudiani, Y., Soedjana, H. S., Wiraswati, H. L., Pramaswati, E., Nugraha, P., & Lukman, K. (2023). Identification of KRAS mutation and HER2 expression in Indonesian colorectal cancer population: a cross-sectional study. Annals of medicine and surgery (2012), 85(5), 1761–1768. https://doi.org/10.1097/MS9.0000000000000694
Ramus, S. J., Bobrow, L. G., Pharoah, P. D., Finnigan, D. S., Fishman, A., Altaras, M., Harrington, P. A., Gayther, S. A., Ponder, B. A., & Friedman, L. S. (1999). Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes, chromosomes & cancer, 25(2), 91–96. https://doi.org/10.1002/(sici)1098-2264(199906)25:2<91::aid-gcc3>3.0.co;2-5
Batool, M., Ahmad, B., & Choi, S. (2019). A Structure-Based Drug Discovery Paradigm. International journal of molecular sciences, 20(11), 2783. https://doi.org/10.3390/ijms20112783
An, X., Tiwari, A. K., Sun, Y., Ding, P. R., Ashby, C. R., Jr, & Chen, Z. S. (2010). BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leukemia research, 34(10), 1255–1268. https://doi.org/10.1016/j.leukres.2010.04.016
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic acids research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in molecular biology (Clifton, N.J.), 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6_10
Goodsell D. S. (2005). Visual methods from atoms to cells. Structure (London, England : 1993), 13(3), 347–354. https://doi.org/10.1016/j.str.2005.01.012
Lee, C., Su, B. H., & Tseng, Y. J. (2022). Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors. Briefings in bioinformatics, 23(5), bbac308. https://doi.org/10.1093/bib/bbac308
Castel, P., Rauen, K. A., & McCormick, F. (2020). The duality of human oncoproteins: drivers of cancer and congenital disorders. Nature reviews. Cancer, 20(7), 383–397. https://doi.org/10.1038/s41568-020-0256-z
Perrakis, A., & Sixma, T. K. (2021). AI revolutions in biology: The joys and perils of AlphaFold. EMBO reports, 22(11), e54046. https://doi.org/10.15252/embr.202154046
Mou, Y., Huang, P. S., Hsu, F. C., Huang, S. J., & Mayo, S. L. (2015). Computational design and experimental verification of a symmetric protein homodimer. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10714–10719. https://doi.org/10.1073/pnas.1505072112
Drake, Z.C., Seffernick, J.T. & Lindert, S. Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling. Nat Commun 13, 7846 (2022). https://doi.org/10.1038/s41467-022-35593-8
Ren, F., Ding, X., Zheng, M., Korzinkin, M., Cai, X., Zhu, W., Mantsyzov, A., Aliper, A., Aladinskiy, V., Cao, Z., Kong, S., Long, X., Man Liu, B. H., Liu, Y., Naumov, V., Shneyderman, A., Ozerov, I. V., Wang, J., Pun, F. W., Polykovskiy, D. A., … Zhavoronkov, A. (2023). AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical science, 14(6), 1443–1452. https://doi.org/10.1039/d2sc05709c
Keskin Karakoyun, H., Yüksel, Ş. K., Amanoglu, I., Naserikhojasteh, L., Yeşilyurt, A., Yakıcıer, C., Timuçin, E., & Akyerli, C. B. (2023). Evaluation of alphafold structure-based protein stability prediction on missense variations in cancer. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1052383
Hekkelman, M. L., de Vries, I., Joosten, R. P., & Perrakis, A. (2023). AlphaFill: enriching AlphaFold models with ligands and cofactors. Nature methods, 20(2), 205–213. https://doi.org/10.1038/s41592-022-01685-y
Ruff, K. M., & Pappu, R. V. (2021). AlphaFold and Implications for Intrinsically Disordered Proteins. Journal of molecular biology, 433(20), 167208. https://doi.org/10.1016/j.jmb.2021.167208
Hou, M.-H., Jin, S.-R., Cui, X.-Y., Peng, C.-X., Zhao, K.-L., Song, L., & Zhang, G.-J. (2023). Protein Multiple Conformations Prediction Using Multi-Objective Evolution Algorithm. bioRxiv 2023.04.21.537776 https://doi.org/10.1101/2023.04.21.537776
Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Hemoglobin: Structure, Function and Allostery. Sub-cellular biochemistry, 94, 345–382. https://doi.org/10.1007/978-3-030-41769-7_14
Bryant, P., Pozzati, G., Zhu, W. et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat Commun 13, 6028 (2022). https://doi.org/10.1038/s41467-022-33729-4
Trinkle-Mulcahy, L., Boulon, S., Lam, Y. W., Urcia, R., Boisvert, F.-M., Vandermoere, F., Morrice, N. A., Swift, S., Rothbauer, U., Leonhardt, H., & Lamond, A. (2008). Identifying specific protein interaction partners using quantitative mass spectrometry and Bead Proteomes. The Journal of Cell Biology, 183(2), 223–239. https://doi.org/10.1083/jcb.200805092
Buel, G. R., & Walters, K. J. (2022). Can alphafold2 predict the impact of missense mutations on structure? Nature Structural & Molecular Biology, 29(1), 1–2. https://doi.org/10.1038/s41594-021-00714-2
Hegedűs, T., Geisler, M., Lukács, G. L., & Farkas, B. (2022). Ins and outs of AlphaFold2 transmembrane protein structure predictions. Cellular and molecular life sciences : CMLS, 79(1), 73. https://doi.org/10.1007/s00018-021-04112-1
Published
How to Cite
Issue
Section
Copyright (c) 2023 Simar Rajpal; Dr. Daniel Plymire
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.