Antibacterial Properties of Manuka Honey and the Role of Methylglyoxal
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5433Keywords:
methylglyoxal, manuka, honey, antibacterial, bacteria, antibiotics, mechanism, dihydroxyacetoneAbstract
The unique ecosystems of New Zealand have produced a diverse range of honey over the years, with Manuka honey being one of the most renowned. Produced by Western honeybees extracting nectar from Manuka flowers, this monofloral honey has become known for its distinct antibacterial and anti-inflammatory properties. Whilst antibacterial activity in other honey tend to stem from factors such as hydrogen peroxide content, high viscosity, osmotic effect, and acidic pH, the antibacterial activity of Manuka honey is mainly attributed to methylglyoxal (MGO), a dicarbonyl compound which is found in high concentrations in Manuka honey. This review paper will focus on the antibacterial properties of Manuka honey and the role that MGO plays. Understanding the specific chemical mechanisms that of attack on different strains of bacteria by Manuka honey and the role of MGO is crucial to potentially understanding how new drugs or medicines can combat antibacterial resistance to antibiotics.
Downloads
References or Bibliography
Van Eaton, C. (2014). Manuka the biography of an extraordinary honey. Exisle Publishing.
Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L., & Giampieri, F. (2014). The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods, 3(3), 420–432. https://doi.org/10.3390/foods3030420
Patel, S., & Cichello, S. (2013). Manuka honey: An emerging natural food with medicinal use. Natural Products and Bioprospecting, 3(4), 121–128. https://doi.org/10.1007/s13659-013-0018-7
Jenkins, R., Roberts, A., & Brown, H. L. (2015). On the antibacterial effects of manuka honey: Mechanistic insights. Research and Reports in Biology, 215. https://doi.org/10.2147/RRB.S75754
Adams, Christopher. J., Boult, C. H., Deadman, B. J., Farr, J. M., Grainger, M. N. C., Manley-Harris, M., & Snow, M. J. (2008). Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 343(4), 651–659. https://doi.org/10.1016/j.carres.2007.12.011
Mavric, E., Wittmann, S., Barth, G., & Henle, T. (2008). Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium)honeys from New Zealand. Molecular Nutrition & Food Research, 52(4), 483–489. https://doi.org/10.1002/mnfr.200700282
Barros, A., Rodrigues, J. A., Almeida, P. J., & Oliva-Teles, M. T. (1999). DETERMINATION OF GLYOXAL, METHYLGLYOXAL, AND DIACETYL IN SELECTED BEER AND WINE, BY HPLC WITH UV SPECTROPHOTOMETRIC DETECTION, AFTER DERIVATIZATION WITH o-PHENYLENEDIAMINE. Journal of Liquid Chromatography & Related Technologies, 22(13), 2061–2069. https://doi.org/10.1081/JLC-100101786
Nagao, M., Fujita, Y., Wakabayashi, K., Nukaya, H., Kosuge, T., & Sugimura, T. (1986). Mutagens in coffee and other beverages. Environmental Health Perspectives, 67, 89–91. https://doi.org/10.1289/ehp.866789
Bednarski, W., Jedrychowski, L., Hammond, E. G., & Nikolov, Z. L. (1989). A Method for the Determination of α-Dicarbonyl Compounds. Journal of Dairy Science, 72(10), 2474–2477. https://doi.org/10.3168/jds.S0022-0302(89)79387-5
Adams, C. J., Manley-Harris, M., & Molan, P. C. (2009). The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344(8), 1050–1053. https://doi.org/10.1016/j.carres.2009.03.020
Olaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165. https://doi.org/10.5555/afhs.2007.7.3.159
Yaghoobi, R., Kazerouni, A., & Kazerouni, O. (2013). Evidence for Clinical Use of Honey in Wound Healing as an Anti-bacterial, Anti-inflammatory Anti-oxidant and Anti-viral Agent: A Review. Jundishapur Journal of Natural Pharmaceutical Products, 8(3), 100–104. https://doi.org/10.17795/jjnpp-9487
Robson, M. C. (1997). WOUND INFECTION. Surgical Clinics of North America, 77(3), 637–650. https://doi.org/10.1016/S0039-6109(05)70572-7
Kato, Y., Kawai, M., Kawai, S., Okano, Y., Rokkaku, N., Ishisaka, A., Murota, K., Nakamura, T., Nakamura, Y., & Ikushiro, S. (2019). Dynamics of the Cellular Metabolism of Leptosperin Found in Manuka Honey. Journal of Agricultural and Food Chemistry, 67(39), 10853–10862. https://doi.org/10.1021/acs.jafc.9b03894
Japhe, B. (2018, April 20). The Wild Story of Manuka, the World’s Most Coveted Honey. AFAR. https://www.afar.com/magazine/the-wild-story-of-manuka-the-worlds-most-coveted-honey
Girma, A., Seo, W., & She, R. C. (2019). Antibacterial activity of varying UMF-graded Manuka honeys. PLOS ONE, 14(10), e0224495. https://doi.org/10.1371/journal.pone.0224495
Manuka Honey Organic. (2023, January 29). What is UMF – Unique Manuka Factor. https://manukahoneyorganic.com/what-is-umf/
Unique Manuka Factor. (n.d.). The Golden Standard in Manuka Honey. https://www.umf.org.nz/unique-manuka-factor/
Königstein, J. (1978). Isomerization of trioses in acid solutions catalysed by molybdate ions. Collection of Czechoslovak Chemical Communications, 43(4), 1152–1158. https://doi.org/10.1135/cccc19781152
Fedoroňko, M., & Königstein, J. (1969). Kinetics of mutual isomerization of trioses and their dehydration to methylglyoxal. Collection of Czechoslovak Chemical Communications, 34(12), 3881–3894. https://doi.org/10.1135/cccc19693881
Strain, H. H., & Spoehr, H. A. (1930). THE EFFECT OF AMINES ON THE CONVERSION OF TRIOSES INTO METHYLGLYOXAL. Journal of Biological Chemistry, 89(2), 527–534. https://doi.org/10.1016/S0021-9258(18)76691-X
Bonn, G., Rinderer, M., & Bobleter, O. (1985). Hydrothermal Degradation and Kinetic Studies of 1,3-Dihydroxy-2-Propanone and 2,3-Dihydroxypropanal. Journal of Carbohydrate Chemistry, 4(1), 67–77. https://doi.org/10.1080/07328308508062949
Bonsignore, A., Leoncini, G., Siri, A., & Ricci, D. (1972). Kinetic behaviour of glyceraldehyde conversion into methylglyoxal. The Italian Journal of Biochemistry, 21(4), 179–188.
Kawashima, K., Itoh, H., & Chibata, I. (1980). Nonenzymatic Browning Reactions of Dihydroxyacetone with Amino Acids or Their Esters. Agricultural and Biological Chemistry, 44(7), 1595–1599. https://doi.org/10.1080/00021369.1980.10864173
Majtan, J. (2011). Methylglyoxal-a potential risk factor of manuka honey in healing of diabetic ulcers. Evidence-Based Complementary and Alternative Medicine: ECAM, 2011, 295494. https://doi.org/10.1093/ecam/neq013
Brudzynski, K., & Lannigan, R. (2012). Mechanism of Honey Bacteriostatic Action Against MRSA and VRE Involves Hydroxyl Radicals Generated from Honey’s Hydrogen Peroxide. Frontiers in Microbiology, 3, 36. https://doi.org/10.3389/fmicb.2012.00036
Weigel, K. U., Opitz, T., & Henle, T. (2004). Studies on the occurrence and formation of 1,2-dicarbonyls in honey. European Food Research and Technology, 218(2), 147–151. https://doi.org/10.1007/s00217-003-0814-0
Jervis-Bardy, J., Foreman, A., Bray, S., Tan, L., & Wormald, P.-J. (2011). Methylglyoxal-infused honey mimics the anti- Staphylococcus aureus biofilm activity of manuka honey: Potential Implication in Chronic Rhinosinusitis: MGO-Infused Honey Mimics Manuka Honey. The Laryngoscope, 121(5), 1104–1107. https://doi.org/10.1002/lary.21717
Alandejani, T., Marsan, J., Ferris, W., Slinger, R., & Chan, F. (2009). Effectiveness of honey on Staphylococcus aureusand Pseudomonas aeruginosa biofilms. Otolaryngology–Head and Neck Surgery, 141(1), 114–118. https://doi.org/10.1016/j.otohns.2009.01.005
Rabie, E., Serem, J. C., Oberholzer, H. M., Gaspar, A. R. M., & Bester, M. J. (2016). How methylglyoxal kills bacteria: An ultrastructural study. Ultrastructural Pathology, 40(2), 107–111. https://doi.org/10.3109/01913123.2016.1154914
Henriques, A. F., Jenkins, R. E., Burton, N. F., & Cooper, R. A. (2011). The effect of manuka honey on the structure of Pseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Diseases, 30(2), 167–171. https://doi.org/10.1007/s10096-010-1065-1
Henriques, A. F., Jenkins, R. E., Burton, N. F., & Cooper, R. A. (2010). The intracellular effects of manuka honey on Staphylococcus aureus. European Journal of Clinical Microbiology & Infectious Diseases, 29(1), 45–50. https://doi.org/10.1007/s10096-009-0817-2
Jenkins, R., Burton, N., & Cooper, R. (2011). Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 66(11), 2536–2542. https://doi.org/10.1093/jac/dkr340
Kwakman, P. H. S., Velde, A. A. T., Boer, L., Speijer, D., Christina Vandenbroucke‐Grauls, M. J., & Zaat, S. A. J. (2010). How honey kills bacteria. The FASEB Journal, 24(7), 2576–2582. https://doi.org/10.1096/fj.09-150789
Kwakman, P. H. S., De Boer, L., Ruyter-Spira, C. P., Creemers-Molenaar, T., Helsper, J. P. F. G., Vandenbroucke-Grauls, C. M. J. E., Zaat, S. A. J., & Te Velde, A. A. (2011). Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens. European Journal of Clinical Microbiology & Infectious Diseases, 30(2), 251–257. https://doi.org/10.1007/s10096-010-1077-x
Gotoh, N., Wakebe, H., Yoshihara, E., Nakae, T., & Nishino, T. (1989). Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. Journal of Bacteriology, 171(2), 983–990. https://doi.org/10.1128/jb.171.2.983-990.1989
Sugawara, E., Steiert, M., Rouhani, S., & Nikaido, H. (1996). Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa. Journal of Bacteriology, 178(20), 6067–6069. https://doi.org/10.1128/jb.178.20.6067-6069.1996
Roberts, A. E. L., Maddocks, S. E., & Cooper, R. A. (2015). Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. Journal of Antimicrobial Chemotherapy, 70(3), 716–725. https://doi.org/10.1093/jac/dku448
Patra, J., & Baek, K.-H. (2016). Antibacterial Activity and Action Mechanism of the Essential Oil from Enteromorpha linza L. against Foodborne Pathogenic Bacteria. Molecules, 21(3), 388. https://doi.org/10.3390/molecules21030388
Al-Sayaghi, A. M., Al-Kabsi, A. M., Abduh, M. S., Saghir, S. A. M., & Alshawsh, M. A. (2022). Antibacterial Mechanism of Action of Two Types of Honey against Escherichia coli through Interfering with Bacterial Membrane Permeability, Inhibiting Proteins, and Inducing Bacterial DNA Damage. Antibiotics, 11(9), 1182. https://doi.org/10.3390/antibiotics11091182
White, J. W. (1957). The Composition of Honey. Bee World, 38(3), 57–66. https://doi.org/10.1080/0005772X.1957.11094976
Molan, P. C. (1992). The Antibacterial Activity of Honey: 1. The nature of the antibacterial activity. Bee World, 73(1), 5–28. https://doi.org/10.1080/0005772X.1992.11099109
Vilhelmsson, O., & Miller, K. J. (2002). Synthesis of Pyruvate Dehydrogenase in Staphylococcus aureus Is Stimulated by Osmotic Stress. Applied and Environmental Microbiology, 68(5), 2353–2358. https://doi.org/10.1128/AEM.68.5.2353-2358.2002
Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493. https://doi.org/10.1093/oxfordjournals.bmb.a072625
Ward, J. F., Evans, J. W., Limoli, C. L., & Calabro-Jones, P. M. (1987). Radiation and hydrogen peroxide induced free radical damage to DNA. The British Journal of Cancer. Supplement, 8, 105–112.
Machado De-Melo, A. A., Almeida-Muradian, L. B. D., Sancho, M. T., & Pascual-Maté, A. (2018). Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research, 57(1), 5–37. https://doi.org/10.1080/00218839.2017.1338444
Ahmad, I., & Aqil, F. (Eds.). (2009). New strategies combating bacterial infection. Wiley-Blackwell.
Rothstein, D. M. (2016). Rifamycins, Alone and in Combination. Cold Spring Harbor Perspectives in Medicine, 6(7), a027011. https://doi.org/10.1101/cshperspect.a027011
Castle, S. S. (2007). Oxacillin. In XPharm: The Comprehensive Pharmacology Reference (pp. 1–5). Elsevier. https://doi.org/10.1016/B978-008055232-3.62337-2
Sapadin, A. N., & Fleischmajer, R. (2006). Tetracyclines: Nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology, 54(2), 258–265. https://doi.org/10.1016/j.jaad.2005.10.004
Imipenem-Cilastatin. (2012). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases. http://www.ncbi.nlm.nih.gov/books/NBK548708/
Jenkins, R., & Cooper, R. (2012). Improving antibiotic activity against wound pathogens with manuka honey in vitro. PloS One, 7(9), e45600. https://doi.org/10.1371/journal.pone.0045600
Liu, M., Lu, J., Müller, P., Turnbull, L., Burke, C. M., Schlothauer, R. C., Carter, D. A., Whitchurch, C. B., & Harry, E. J. (2015). Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with manuka honey. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00779
Müller, P., Alber, D. G., Turnbull, L., Schlothauer, R. C., Carter, D. A., Whitchurch, C. B., & Harry, E. J. (2013). Synergism between Medihoney and Rifampicin against Methicillin-Resistant Staphylococcus aureus (MRSA). PLoS ONE, 8(2), e57679. https://doi.org/10.1371/journal.pone.0057679
Mukherjee, S., Chaki, S., Das, S., Sen, S., Dutta, S. K., & Dastidar, S. G. (2011). Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa. Indian Journal of Experimental Biology, 49(7), 547–551.
Cooper, R. A., Jenkins, L., Henriques, A. F. M., Duggan, R. S., & Burton, N. F. (2010). Absence of bacterial resistance to medical-grade manuka honey. European Journal of Clinical Microbiology & Infectious Diseases, 29(10), 1237–1241. https://doi.org/10.1007/s10096-010-0992-1
Camplin, A. L., & Maddocks, S. E. (2014). Manuka honey treatment of biofilms of Pseudomonas aeruginosa results in the emergence of isolates with increased honey resistance. Annals of Clinical Microbiology and Antimicrobials, 13, 19. https://doi.org/10.1186/1476-0711-13-19
Jenkins, R. E., & Cooper, R. (2012). Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin. Journal of Antimicrobial Chemotherapy, 67(6), 1405–1407. https://doi.org/10.1093/jac/dks071
Aron, M., Victoria Akinpelu, O., Dorion, D., & Daniel, S. (2012). Otologic safety of manuka honey. Journal of Otolaryngology - Head & Neck Surgery = Le Journal D’oto-Rhino-Laryngologie Et De Chirurgie Cervico-Faciale, 41 Suppl 1, S21-30.
Sassi-Gaha, S., Loughlin, D. T., Kappler, F., Schwartz, M. L., Su, B., Tobia, A. M., & Artlett, C. M. (2010). Two dicarbonyl compounds, 3-deoxyglucosone and methylglyoxal, differentially modulate dermal fibroblasts. Matrix Biology, 29(2), 127–134. https://doi.org/10.1016/j.matbio.2009.09.007
Vlassara, H. (2005). Advanced Glycation in Health and Disease: Role of the Modern Environment. Annals of the New York Academy of Sciences, 1043(1), 452–460. https://doi.org/10.1196/annals.1333.051
Dong, W., Xie, T., Dong, J.-Y., Jin, S.-W., Hua, L.-N., Song, F., Qing, C., & Lu, S.-L. (2008). [Effects of advanced glycosylation end products on the biological behavior of neutrophils]. Zhonghua Shao Shang Za Zhi = Zhonghua Shaoshang Zazhi = Chinese Journal of Burns, 24(1), 9–12.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Youlin Feng
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.