Comparative Analysis of Adverse Drug Reactions (ADRs) between COVID-19 Vaccines and Established Vaccines: A CDC VAERS Database Analysis

Adverse reaction after COVID-19 vaccination

Authors

  • Shruti Sreekanth Lake Nona High School, Orlando, FL
  • Shreya Sreekanth Lake Nona High School, Orlando, FL
  • Sreekanth Viswanathan

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5431

Keywords:

COVID-19, Vaccines, Adverse Drug Reactions, CDC WONDER

Abstract

Background: COVID-19 vaccines have been developed rapidly to combat the pandemic, but vaccine hesitancy remains a challenge due to concerns about adverse drug reactions (ADRs). This study aimed to compare the ADR profiles of COVID-19 vaccines with established vaccines and investigate differences between adults and children.

Methods: A retrospective observational study used the VAERS database to analyze ADR reports from January 2021 to December 2022 in the United States. Top ten common ADRs and seven severe ADRs associated with COVID-19 vaccines were studied using the Evans Criteria.

Results: Among the common ADRs, only dyspnea showed disproportionate reporting in COVID-19 vaccines. Severe ADRs, including myocarditis, pneumonia, and cerebrovascular accidents, were disproportionately reported. Age-stratified analysis revealed myocarditis disproportionately reported in both adults and children.

Conclusions: This study provides a comprehensive comparison of ADRs between COVID-19 vaccines and established vaccines. Although some severe ADRs were disproportionately reported, further evaluation is required to establish any causal relationships with COVID-19 vaccine. Continuous monitoring of ADRs is crucial for vaccine safety.

Downloads

Download data is not yet available.

References or Bibliography

Anand, P., & Stahel, V. P. (2021). Review the safety of Covid-19 mRNA vaccines: a review.

Patient Safety in Surgery, 15(1), 20. doi:10.1186/s13037-021-00291-9

Ensuring the safety of vaccines in the United States. (2023, April 27). Retrieved 6 August 2023,

from https://www.cdc.gov/vaccines/hcp/conversations/ensuring-safe-vaccines.html

General help for CDC WONDER. (n.d.). Retrieved 6 August 2023, from

https://wonder.cdc.gov/wonder/help/main.html

VAERS. (2022, September 8). Retrieved 6 August 2023, from

https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vaers/index.html

(N.d.). Retrieved 6 August 2023, from https://wonder.cdc.gov/controller/datarequest/D8

Dror, A. A., Eisenbach, N., Taiber, S., Morozov, N. G., Mizrachi, M., Zigron, A., … Sela, E.

(2020). Vaccine hesitancy: The next challenge in the fight against COVID-19.

doi:10.21203/rs.3.rs-35372/v1

Dubé, E., Laberge, C., Guay, M., Bramadat, P., Roy, R., & Bettinger, J. (2013). Vaccine

hesitancy: an overview. Human Vaccines & Immunotherapeutics, 9(8), 1763–1773.

doi:10.4161/hv.24657

El-Shitany, N. A., Harakeh, S., Badr-Eldin, S. M., Bagher, A. M., Eid, B., Almukadi, H., … El-

Hamamsy, M. (2021). Minor to moderate side effects of Pfizer-BioNTech COVID-19 vaccine

among Saudi residents: A retrospective cross-sectional study. International Journal of General

Medicine, 14, 1389–1401. doi:10.2147/IJGM.S310497

Evans, S. J., Waller, P. C., & Davis, S. (2001). Use of proportional reporting ratios (PRRs) for

signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiology and

Drug Safety, 10(6), 483–486. doi:10.1002/pds.677

Griffith, J., Marani, H., & Monkman, H. (2021). COVID-19 vaccine hesitancy in Canada: Content

analysis of tweets using the Theoretical Domains Framework. Journal of Medical Internet

Research, 23(4), e26874. doi:10.2196/26874

Guidry, J. P. D., Laestadius, L. I., Vraga, E. K., Miller, C. A., Perrin, P. B., Burton, C. W., …

Carlyle, K. E. (2021). Willingness to get the COVID-19 vaccine with and without emergency use

authorization. American Journal of Infection Control, 49(2), 137–142.

doi:10.1016/j.ajic.2020.11.018

Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., … Weintraub, E. S.

(2021). Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA: The Journal

of the American Medical Association, 326(14), 1390–1399. doi:10.1001/jama.2021.15072

Kouhpayeh, H., & Ansari, H. (2022). Adverse events following COVID-19 vaccination: A

systematic review and meta-analysis. International Immunopharmacology, 109(108906), 108906.

doi:10.1016/j.intimp.2022.108906

MacDonald, N. E., & SAGE Working Group on Vaccine Hesitancy. (2015). Vaccine hesitancy:

Definition, scope and determinants. Vaccine, 33(34), 4161–4164.

doi:10.1016/j.vaccine.2015.04.036

Comparing the differences between COVID-19 vaccines. (2023, May 23). Retrieved 6 August

, from Mayo Clinic website: https://www.mayoclinic.org/coronavirus-covid-

/vaccine/comparing-vaccines

Mesa, D. O., Hogan, A., Watson, O., Charles, G., Hauck, K., Ghani, A. C., & Winskill, P. (2021).

Quantifying the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical

Interventions to control the COVID-19 pandemic. doi:10.21203/rs.3.rs-343127/v1

Orenstein, W. A., & Ahmed, R. (2017). Simply put: Vaccination saves lives. Proceedings of the

National Academy of Sciences of the United States of America, 114(16), 4031–4033.

doi:10.1073/pnas.1704507114

Oster, M. E., Shay, D. K., & Shimabukuro, T. T. (2022). [Review of Myocarditis cases after

mRNA-based COVID-19 vaccination in the US-reply]. JAMA: the journal of the American

Medical Association, 327(20), 2020–2021. doi:10.1001/jama.2022.5134

Patone, M., Handunnetthi, L., Saatci, D., Pan, J., Katikireddi, S. V., Razvi, S., … Hippisley-Cox,

J. (2021). Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2

infection. Nature Medicine, 27(12), 2144–2153. doi:10.1038/s41591-021-01556-7

Piché-Renaud, P.-P., Morris, S. K., & Top, K. A. (2023). A narrative review of vaccine

pharmacovigilance during mass vaccination campaigns: Focus on myocarditis and pericarditis

after COVID-19 mRNA vaccination. British Journal of Clinical Pharmacology, 89(3), 967–

doi:10.1111/bcp.15625

Riad, A., Põld, A., Kateeb, E., & Attia, S. (2022). Oral adverse events following COVID-19

vaccination: Analysis of VAERS reports. Frontiers in Public Health, 10, 952781.

doi:10.3389/fpubh.2022.952781

Rodriguez-Nava, G., Egoryan, G., Trelles-Garcia, D. P., Yanez-Bello, M. A., & Murguia-Fuentes,

R. (2021). Disproportionality analysis of anaphylactic reactions after vaccination with messenger

RNA coronavirus disease 2019 vaccines in the United States. Annals of Allergy, Asthma &

Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology,

(1), 139–140. doi:10.1016/j.anai.2021.04.004

Sallam, M. (2021). COVID-19 vaccine hesitancy worldwide: A concise systematic review of

vaccine acceptance rates. Vaccines, 9(2), 160. doi:10.3390/vaccines9020160

Salmon, D. A., Dudley, M. Z., Glanz, J. M., & Omer, S. B. (2015). Vaccine hesitancy: Causes,

consequences, and a call to action. American Journal of Preventive Medicine, 49(6 Suppl 4),

S391-8. doi:10.1016/j.amepre.2015.06.009

Shimabukuro, T. T., Nguyen, M., Martin, D., & DeStefano, F. (2015). Safety monitoring in the

vaccine adverse event reporting system (VAERS). Vaccine, 33(36), 4398–4405.

doi:10.1016/j.vaccine.2015.07.035

Simnani, F. Z., Singh, D., & Kaur, R. (2022). COVID-19 phase 4 vaccine candidates,

effectiveness on SARS-CoV-2 variants, neutralizing antibody, rare side effects, traditional and

nano-based vaccine platforms: a review. 3 Biotech, 12(1), 15. doi:10.1007/s13205-021-03076-0

Singh, A., Khillan, R., Mishra, Y., & Khurana, S. (2022). The safety profile of COVID-19

vaccinations in the United States. American Journal of Infection Control, 50(1), 15–19.

doi:10.1016/j.ajic.2021.10.015

Singh, R. B., Parmar, U. P. S., Kahale, F., Agarwal, A., & Tsui, E. (2023). Vaccine-associated

uveitis after COVID-19 vaccination: Vaccine adverse event reporting system database analysis.

Ophthalmology, 130(2), 179–186. doi:10.1016/j.ophtha.2022.08.027

Troiano, G., & Nardi, A. (2021). Vaccine hesitancy in the era of COVID-19. Public Health, 194,

–251. doi:10.1016/j.puhe.2021.02.025

Understanding the COVID-19 pandemic in real-time. (n.d.). Retrieved 6 August 2023, from

https://www.unglobalpulse.org/project/understanding-the-covid-19-pandemic-in-real-time/

x2 contingency table. (n.d.). Retrieved 6 August 2023, from http://vassarstats.net/tab2x2.html

Vetter, V., Denizer, G., Friedland, L. R., Krishnan, J., & Shapiro, M. (2018). Understanding

modern-day vaccines: what you need to know. Annals of Medicine, 50(2), 110–120.

doi:10.1080/07853890.2017.1407035

Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. (n.d.). Retrieved 6

August 2023, from https://www.who.int/news-room/questions-and-answers/item/herd-immunity-lockdowns-and-covid-19

Published

11-30-2023

How to Cite

Sreekanth, S., Sreekanth, S., & Viswanathan, S. (2023). Comparative Analysis of Adverse Drug Reactions (ADRs) between COVID-19 Vaccines and Established Vaccines: A CDC VAERS Database Analysis: Adverse reaction after COVID-19 vaccination. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5431

Issue

Section

HS Research Projects