Effects of Black Holes on the Space-Time Continuum
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5351Keywords:
Black Hole, Space-Time, Quantum Mechanics, General Relativity, Astrophysics, Quantum Gravity, Space-Time SingularityAbstract
Black holes are one of nature's greatest mysteries. For years, these celestial bodies have evaded scientists due to their intense gravity and extreme density. A specific area of black hole research that is overlooked is how these cosmic bodies affect the space-time continuum. Developing a complete understanding of space-time in and around black holes is essential for future research relating to black holes and combining the two great theories of this generation: general relativity and quantum mechanics. This paper aims to analyze how the space-time continuum is distorted by black holes and explain the applications that space-time around black holes has to modern physics. It first develops an understanding of space-time linkage and curvature through Einstein’s theories of relativity and presents the geometry of space-time as predicted by Minkowski’s equation. When inside a black hole, space and time essentially trade places so that the flow of time causes matter to be drawn within a black hole. As one explores further toward the centre of a black hole, curvature increases until it is predicted by general relativity to reach a gravitational singularity where density becomes infinite, and the laws of space-time break down. In the paper, the discrepancy between general relativity and quantum mechanics is explored through Hawking Radiation and the theoretical singularity at a black hole's centre. A combination of written explanations, math models, and diagrams are used to communicate how the space-time continuum is affected by black holes.
Downloads
References or Bibliography
Baade, W., & Zwicky. F. (1934). Remarks on Super-Novae and Cosmic Rays. Phys. Rev., 46(1), 76–77. https://doi.org/10.1103/PhysRev.46.76.2
Bambi, C. (2020). Astrophysical Black Holes: A Review. Multifrequency Behaviour of High Energy Cosmic Sources, page 28. https://doi.org/10.22323%2F1.362.0028
Belinskij, V. A., Khalatnikov I. M., and. Lifshits E. M. (1970). Oscillatory approach to a singular point in the relativistic cosmology. Advances in Physics, 19, 525–573. https://doi.org/10.1080/00018737000101171
Borissova, J. N., & Eichhorn, A. (2021). Towards black-hole singularity-resolution in the Lorentzian gravitational path integral. Universe, 7(3), 48. https://doi.org/10.3390/universe7030048
Caroll, S. M. (1997). Lecture Notes on General Relativity. arXiv e-prints, pages gr–qc/9712019. https://doi.org/10.48550/arXiv.gr-qc/9712019
Chandresekhar, S. (1934). Stellar configurations with degenerate cores. The Observatory, 57, 373–377. https://ui.adsabs.harvard.edu/abs/1934Obs....57..373C
Dewitt, B. S., & Giampiero, E. (2008). An introduction to quantum gravity. International Journal of Geometric Methods in Modern Physics, 5(1), 101-156. https://doi.org/10.1142%2Fs0219887808002679
Einstein, A. (1905). Zur Elektrodynamik bewegter K ̈orper. Annalen der Physik, 322(10). 891–921. https://doi.org/10.1002/andp.19053221004
Einstein. A. (1916). Die Grundlage der allgemeinen Relativit ̈atstheorie. Annalen der Physik, 354(7), 769–822. http://dx.doi.org/10.1002/andp.19163540702
Finkelstein, D. (1958). Phys. Rev., 110(4), 965-967. https://doi.org/10.1103/PhysRev.110.965
Gambini, R., & Pullin, J. (2008). Black Holes in Loop Quantum Gravity: The Complete Space-Time. Phys. Rev. Lett, 101(16), 161301, https://doi.org/10.1103/PhysRevLett.101.161301
Gao, L., Liu, Y., & Lyu, H. (2023). Black Hole Interiors in Holographic Topological Semimetals. Journal of High Energy Physics, 2023(3), 34. https://doi.org/10.48550/arXiv.2301.01468
Giddings, S. B. (2019). Black Holes in the Quantum Universe. Philosophical Transactions of the Royal Society of London Series A, 377(2161), 20190029. https://doi.org/10.48550/arXiv.1905.08807
Greene, J. E., Strader, J., & Ho, L. C (2020). Intermediate-Mass Black Holes. Annual Review of Astronomy and Astrophysics, 58, 257–312. https://doi.org/10.48550/arXiv.1911.09678
Hartle, J. B. (2021). Collapse to a Black Hole. In Gravity: An Introduction to Einstein’s General Relativity (pp. 262–264). essay, Cambridge University Press.
Hawking, S. W., & Penrose, R. (1970). The Singularities of Gravitational Collapse and Cosmology. Proceedings of the Royal Society of London Series A, 314(1519), 529–548. https://doi.org/10.1098/rspa.1970.0021
Hawking, S. W. (1975). Particle Creation by Black Holes. Communications in Mathematical Physics, 43(3), 199–220. https://doi.org/10.1007/BF02345020
Hawking, S. W. (1976). Breakdown of predictability in gravitational collapse. Phys. Rev. D, 14(10), 2460–2473. https://doi.org/10.1103/PhysRevD.14.2460
Heinicke, C., & Hehl, F. W. (2015). International Journal of Modern Physics D, 24(2), 1530006-214. https://doi.org/10.48550/arXiv.1503.02172
Hsiao, Y., Lee, D., & Lin, C. (2020). Equatorial light bending around Kerr-Newman black holes. , 101(6), 064070.
https://doi.org/10.48550/arXiv.1910.04372
Hehl, F. W. (2008). Maxwell’s equations in Minkowski’s world: their premetric generalization and the electromagnetic energy-momentum tensor. Annalender Physik, 520(9-10), 691–704. https://doi.org/10.1002%2Fandp.200852009-1007
Kerr, R. P. (1963). Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett., 11(5), 237–238. https://doi.org/10.1103/PhysRevLett.11.237
Kerr, R. P. (2007). Discovering the Kerr and Kerr-Schild metrics. arXiv e-prints, page arXiv:0706.1109.
https://doi.org/10.48550/arXiv.0706.1109
Lattimer, J. M., & Prakesh, M. (2004). The Physics of Neutron Stars. Science, 304(5670), 536–542.
https://doi.org/10.48550/arXiv.astro-ph/0405262
Marsh, G. E. (2014). Rigid Rotation and the Kerr Metric. arXiv e-prints, page arXiv:1404.5297.
https://doi.org/10.48550/arXiv.1404.5297
Narayan, R., & Bartlemann, M. (1997). Lectures on gravitational lensing. arXiv e-prints, pages astro–ph/9606001
https://doi.org/10.48550/arXiv.astro-ph/9606001
Oppenheimer, J. R., & Snyder, H.(1939). On continued gravitational contraction. Phys. Rev., 56, 455–459. https://doi.org/10.1103/PhysRev.56.455
Penrose, R. (1985). Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett., 14(3), 57–59. https://doi.org/10.1103/PhysRevLett.14.57
Peres, A., & Terno D. R. Quantum Information and Relativity Theory. (2004). Reviews of Modern Physics, 76(1), 93–123. https://doi.org/10.1103%2Frevmodphys.76.93
Ricarte, A., Palumbo, D. C. M., Narayan, R., Foelofs, F., and Enami, R. (2022). Observational Signatures of Frame Dragging in Strong Gravity. The Astrophysical Journal Letters, 941(1), L12. https://doi.org/10.48550/arXiv.2211.01810
Schutz, B. F. (2022). Inside r=2M. In A First Course in General Relativity (p. 300). essay, Cambridge University Press.
Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pages 189–196.
https://doi.org/10.48550/arXiv.0709.2257
Thorne, K. S. (1995). Black holes and time warps: Einstein’s outrageous legacy. W.W. Norton.
Visser, Matt. (2008). The Kerr Space-Time: A Brief Introduction. arXiv e-prints, page arXiv:0706.0622. https://doi.org/10.48550/arXiv.0706.0622
Volonteri, M. (2012). The Formation and Evolution of Massive Black Holes. Science, 337(6094), 544. https://doi.org/10.48550/arXiv.1208.1106
Wittman, D. M. (2018). Time Dilation and Length Contraction. In The Elements of Relativity (pp. 74–84). essay, Oxford University Press.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Aliza Fatima; Sophia Kressy
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.