Effects of Black Holes on the Space-Time Continuum

Authors

  • Aliza Fatima Notre Dame Catholic Secondary School
  • Sophia Kressy

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5351

Keywords:

Black Hole, Space-Time, Quantum Mechanics, General Relativity, Astrophysics, Quantum Gravity, Space-Time Singularity

Abstract

Black holes are one of nature's greatest mysteries. For years, these celestial bodies have evaded scientists due to their intense gravity and extreme density. A specific area of black hole research that is overlooked is how these cosmic bodies affect the space-time continuum. Developing a complete understanding of space-time in and around black holes is essential for future research relating to black holes and combining the two great theories of this generation: general relativity and quantum mechanics. This paper aims to analyze how the space-time continuum is distorted by black holes and explain the applications that space-time around black holes has to modern physics. It first develops an understanding of space-time linkage and curvature through Einstein’s theories of relativity and presents the geometry of space-time as predicted by Minkowski’s equation. When inside a black hole, space and time essentially trade places so that the flow of time causes matter to be drawn within a black hole. As one explores further toward the centre of a black hole, curvature increases until it is predicted by general relativity to reach a gravitational singularity where density becomes infinite, and the laws of space-time break down. In the paper, the discrepancy between general relativity and quantum mechanics is explored through Hawking Radiation and the theoretical singularity at a black hole's centre. A combination of written explanations, math models, and diagrams are used to communicate how the space-time continuum is affected by black holes.

Downloads

Download data is not yet available.

References or Bibliography

Baade, W., & Zwicky. F. (1934). Remarks on Super-Novae and Cosmic Rays. Phys. Rev., 46(1), 76–77. https://doi.org/10.1103/PhysRev.46.76.2

Bambi, C. (2020). Astrophysical Black Holes: A Review. Multifrequency Behaviour of High Energy Cosmic Sources, page 28. https://doi.org/10.22323%2F1.362.0028

Belinskij, V. A., Khalatnikov I. M., and. Lifshits E. M. (1970). Oscillatory approach to a singular point in the relativistic cosmology. Advances in Physics, 19, 525–573. https://doi.org/10.1080/00018737000101171

Borissova, J. N., & Eichhorn, A. (2021). Towards black-hole singularity-resolution in the Lorentzian gravitational path integral. Universe, 7(3), 48. https://doi.org/10.3390/universe7030048

Caroll, S. M. (1997). Lecture Notes on General Relativity. arXiv e-prints, pages gr–qc/9712019. https://doi.org/10.48550/arXiv.gr-qc/9712019

Chandresekhar, S. (1934). Stellar configurations with degenerate cores. The Observatory, 57, 373–377. https://ui.adsabs.harvard.edu/abs/1934Obs....57..373C

Dewitt, B. S., & Giampiero, E. (2008). An introduction to quantum gravity. International Journal of Geometric Methods in Modern Physics, 5(1), 101-156. https://doi.org/10.1142%2Fs0219887808002679

Einstein, A. (1905). Zur Elektrodynamik bewegter K ̈orper. Annalen der Physik, 322(10). 891–921. https://doi.org/10.1002/andp.19053221004

Einstein. A. (1916). Die Grundlage der allgemeinen Relativit ̈atstheorie. Annalen der Physik, 354(7), 769–822. http://dx.doi.org/10.1002/andp.19163540702

Finkelstein, D. (1958). Phys. Rev., 110(4), 965-967. https://doi.org/10.1103/PhysRev.110.965

Gambini, R., & Pullin, J. (2008). Black Holes in Loop Quantum Gravity: The Complete Space-Time. Phys. Rev. Lett, 101(16), 161301, https://doi.org/10.1103/PhysRevLett.101.161301

Gao, L., Liu, Y., & Lyu, H. (2023). Black Hole Interiors in Holographic Topological Semimetals. Journal of High Energy Physics, 2023(3), 34. https://doi.org/10.48550/arXiv.2301.01468

Giddings, S. B. (2019). Black Holes in the Quantum Universe. Philosophical Transactions of the Royal Society of London Series A, 377(2161), 20190029. https://doi.org/10.48550/arXiv.1905.08807

Greene, J. E., Strader, J., & Ho, L. C (2020). Intermediate-Mass Black Holes. Annual Review of Astronomy and Astrophysics, 58, 257–312. https://doi.org/10.48550/arXiv.1911.09678

Hartle, J. B. (2021). Collapse to a Black Hole. In Gravity: An Introduction to Einstein’s General Relativity (pp. 262–264). essay, Cambridge University Press.

Hawking, S. W., & Penrose, R. (1970). The Singularities of Gravitational Collapse and Cosmology. Proceedings of the Royal Society of London Series A, 314(1519), 529–548. https://doi.org/10.1098/rspa.1970.0021

Hawking, S. W. (1975). Particle Creation by Black Holes. Communications in Mathematical Physics, 43(3), 199–220. https://doi.org/10.1007/BF02345020

Hawking, S. W. (1976). Breakdown of predictability in gravitational collapse. Phys. Rev. D, 14(10), 2460–2473. https://doi.org/10.1103/PhysRevD.14.2460

Heinicke, C., & Hehl, F. W. (2015). International Journal of Modern Physics D, 24(2), 1530006-214. https://doi.org/10.48550/arXiv.1503.02172

Hsiao, Y., Lee, D., & Lin, C. (2020). Equatorial light bending around Kerr-Newman black holes. , 101(6), 064070.

https://doi.org/10.48550/arXiv.1910.04372

Hehl, F. W. (2008). Maxwell’s equations in Minkowski’s world: their premetric generalization and the electromagnetic energy-momentum tensor. Annalender Physik, 520(9-10), 691–704. https://doi.org/10.1002%2Fandp.200852009-1007

Kerr, R. P. (1963). Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett., 11(5), 237–238. https://doi.org/10.1103/PhysRevLett.11.237

Kerr, R. P. (2007). Discovering the Kerr and Kerr-Schild metrics. arXiv e-prints, page arXiv:0706.1109.

https://doi.org/10.48550/arXiv.0706.1109

Lattimer, J. M., & Prakesh, M. (2004). The Physics of Neutron Stars. Science, 304(5670), 536–542.

https://doi.org/10.48550/arXiv.astro-ph/0405262

Marsh, G. E. (2014). Rigid Rotation and the Kerr Metric. arXiv e-prints, page arXiv:1404.5297.

https://doi.org/10.48550/arXiv.1404.5297

Narayan, R., & Bartlemann, M. (1997). Lectures on gravitational lensing. arXiv e-prints, pages astro–ph/9606001

https://doi.org/10.48550/arXiv.astro-ph/9606001

Oppenheimer, J. R., & Snyder, H.(1939). On continued gravitational contraction. Phys. Rev., 56, 455–459. https://doi.org/10.1103/PhysRev.56.455

Penrose, R. (1985). Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett., 14(3), 57–59. https://doi.org/10.1103/PhysRevLett.14.57

Peres, A., & Terno D. R. Quantum Information and Relativity Theory. (2004). Reviews of Modern Physics, 76(1), 93–123. https://doi.org/10.1103%2Frevmodphys.76.93

Ricarte, A., Palumbo, D. C. M., Narayan, R., Foelofs, F., and Enami, R. (2022). Observational Signatures of Frame Dragging in Strong Gravity. The Astrophysical Journal Letters, 941(1), L12. https://doi.org/10.48550/arXiv.2211.01810

Schutz, B. F. (2022). Inside r=2M. In A First Course in General Relativity (p. 300). essay, Cambridge University Press.

Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, pages 189–196.

https://doi.org/10.48550/arXiv.0709.2257

Thorne, K. S. (1995). Black holes and time warps: Einstein’s outrageous legacy. W.W. Norton.

Visser, Matt. (2008). The Kerr Space-Time: A Brief Introduction. arXiv e-prints, page arXiv:0706.0622. https://doi.org/10.48550/arXiv.0706.0622

Volonteri, M. (2012). The Formation and Evolution of Massive Black Holes. Science, 337(6094), 544. https://doi.org/10.48550/arXiv.1208.1106

Wittman, D. M. (2018). Time Dilation and Length Contraction. In The Elements of Relativity (pp. 74–84). essay, Oxford University Press.

Published

11-30-2023

How to Cite

Fatima, A., & Kressy, S. (2023). Effects of Black Holes on the Space-Time Continuum. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5351

Issue

Section

HS Review Articles