Towards Sustainable AI: Mitigating Carbon Impact Through Compact Models
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5340Keywords:
Green AI, Environmental Impact, Energy ConsumptionAbstract
As AI technology continues to advance rapidly, it is essential to address the environmental concerns associated with the increasing carbon emissions and their contribution to global warming. The expanding AI industry requires significant computing power, making it a potential major contributor to carbon emissions in the future. Unfortunately, our current understanding of AI models is very limited. We conducted a comprehensive analysis involving 12 distinct AI models, encompassing object detection, translation, and text-to-image generation tasks. Our findings revealed that smaller AI models can achieve equal or even better results compared to larger models while offering a significant reduction of carbon emissions. This highlights the potential for environmental savings by prioritizing smaller models. These findings underscore the importance of considering the environmental impact of AI models and encourage the adoption of strategies such as using smaller models and optimizing workload schedules to reduce carbon emissions. By prioritizing sustainability in AI development and deployment, we can work towards a greener and more sustainable future.
Downloads
References or Bibliography
Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54-63. https://dl.acm.org/doi/10.1145/3381831
Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C., Ng, A. Y., Hassabis, D., Platt, J. C., Creutzig, F., Chayes, J., & Bengio, Y.(2022). Tackling Climate Change with Machine Learning. ACM Computing Surveys, 55(2), Article 42, 1-96. https://dl.acm.org/doi/10.1145/3485128
Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial Intelligence for Sustainability: Challenges, Opportunities, and a Research Agenda. International Journal of Information Management, 53. https://www.sciencedirect.com/science/article/abs/pii/S0268401220300967
Mehlin, V., Schacht, S., & Lanquillon, C. (2023). Towards energy-efficient Deep Learning: An overview of energy-efficient approaches along the Deep Learning Lifecycle. arXiv preprint arXiv:2303.01980. https://doi.org/10.48550/arXiv.2303.01980
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., ... Dai, J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection. ICLR 2021 Oral, September 2020. https://iclr.cc/virtual/2021/oral/3448
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_13
Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weissenborn, D., Dosovitskiy, A., ... Houlsby, N. (2022). Simple Open-Vocabulary Object Detection with Vision Transformers. ECCV 2022, 728-755. https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136700714.pdf
Dhar, P. (2020). The Carbon Impact of Artificial Intelligence. Nature Journal, Nat Mach Intell, 2, 423-425. https://www.nature.com/articles/s42256-020-0219-9
Yigitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. MDPI Sustainability, 13(16). https://doi.org/10.3390/su13168952
Bergstra, J. S., Bardenet, R., Bengio, Y., & Kegl, B. (2011). Algorithms for Hyper-parameter Optimization. In Proc. of NeurIPS. https://papers.nips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
Dettmers, T., & Zettlemoyer, L. (2019). Sparse Networks from Scratch: Faster Training without Losing Performance? arXiv preprint arXiv:1907.04840. https://doi.org/10.48550/arXiv.1907.04840
Stable diffusion samplers. (2023, January 8). NightCafe. https://nightcafe.studio/blogs/info/stable-diffusion-samplers
Stable Diffusion 2.1. (2023, July 4). Hugging Face. https://huggingface.co/stabilityai/stable-diffusion-2-1
Abyssorangemix2 - sfw/soft nsfw. (2023, March 28). Civitai. https://civitai.com/models/4437/abyssorangemix2-sfwsoft-nsfw
Pastel Mix Stylized Anime Model. (2023, May 24). CivitAi. https://civitai.com/models/5414/pastel-mix-stylized-anime-model
How many frames per second can the human eye see? (2021, March 2). CaseGuard. https://caseguard.com/articles/how-many-frames-per-second-can-the-human-eye-see/
Mukulsomukesh M. J. (2022, April 22). How to draw bounding boxes on an image in PyTorch? GeeksforGeeks. https://www.geeksforgeeks.org/how-to-draw-bounding-boxes-on-an-image-in-pytorch/
CodeCarbon. (2021). CodeCarbon. https://codecarbon.io/
Security Camera Statistics: 2022 Market Share Analysis & Industry Trends.(2023, July 15). OpticsMag. https://opticsmag.com/security-camera-statistics/
AUTOMATIC1111. (2023, July 19). Stable-diffusion-webui. GitHub. https://github.com/AUTOMATIC1111/stable-diffusion-webui
Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., Edunov, S. (2019). Facebook FAIR’s WMT19 News Translation Task Submission. arXiv preprint arXiv:1907.06616. https://doi.org/10.48550/arXiv.1907.06616
Kasai, J., Pappas, N., Peng, H., Cross, J., & Smith, N. A. (2019). Deep Encoder, Shallow Decoder: Reevaluating Non-Autoregressive Machine Translation. arXiv preprint arXiv:2006.10369. https://doi.org/10.48550/arXiv.2006.10369
Lewis, P., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., & Stoyanov, V. (2020). Leveraging Pre-trained Checkpoints for Sequence Generation Tasks.
Transactions of the Association for Computational Linguistics, 8, 264-280. https://doi.org/10.1162/tacl_a_00313
Evaluate custom models. (2023, July 19). Google Cloud. https://cloud.google.com/translate/automl/docs/evaluate
Hugging Face models. (2016). Hugging Face. https://huggingface.co/models
Published
How to Cite
Issue
Section
Copyright (c) 2023 Eddie Zhang, Jixiu Chang, Ashley Yang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.