Impact of Non-Thermal Particle Acceleration on Radiative Signatures of AGN Jet-Cloud Interactions
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5208Keywords:
AGN Jet-Cloud Interactions, Non-Thermal Particle Acceleration, Synchrotron Emissions, Inverse Compton Scattering, Light Curve Flux VariabilityAbstract
This study investigates the complex dynamics of AGN (Active Galactic Nucleus) jet-cloud interactions, particularly focusing on the impact of non-thermal particle acceleration on the resulting radiative signatures. We utilize advanced computational simulations, tracking changes in jet properties and emissions over a span of 0.2 Myr (millions of years). The research design incorporates the modeling of jet-cloud interactions, with a key focus on variations in the jet's density, velocity, and magnetic field. Findings reveal a two-fold increase in the magnetic field strength up to ~5 μG due to cloud incorporation, which, coupled with an elevated non-thermal particle population, enhances synchrotron emissions, shifting the spectral index from 2.2 to 2.4. Inverse Compton scattering saw a 30% increase within the first 0.125 Myr, reflecting in an abrupt X-ray and gamma-ray emissions spike. Furthermore, the jet's light curve flux variability in the X-ray band showcased an initial peak increase of about 28% by 0.175 Myr, settling to a 20% increase by 0.2 Myr, attributable to cloud disruption and absorption. Conclusions drawn from these findings confirm our hypothesis that non-thermal particle acceleration dramatically influences the radiative signatures of AGN jet-cloud interactions .It underscores the necessity of considering such acceleration processes in modeling AGN jet-cloud interactions and posits that these changes could be instrumental as observational indicators, thereby contributing to more accurate interpretations of AGN activity and evolution.
Downloads
References or Bibliography
Achterberg, A., Gallant, Y. A., Kirk, J. G., & Guthmann, A. W. (2001). Particle acceleration by ultrarelativistic shocks: theory and simulations. Monthly Notices of the Royal Astronomical Society, 328(2), 393-408.
Atwood, W. B., et al. (2009). The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophysical Journal, 697(2), 1071–1102.
Bell, A. R. (1978). The acceleration of cosmic rays in shock fronts. I. Monthly Notices of the Royal Astronomical Society, 182, 147-156.
Begelman, M. C. (1998). Evidence for black hole event horizons? Astrophysical Journal Letters, 493(2), L91.
Begelman, M. C., & Cioffi, D. F. (1989). Astrophysical jets. Astrophysics and Space Science, 156(1), 223-248.
Blanford, R., & Ostriker, J. P. (1978). Particle acceleration by astrophysical shocks. The Astrophysical Journal Letters, 221, L29.
Blundell, K. M., & Bowler, M. G. (2004). Symmetry in the changing jets of SS 433 and its true distance from us. Astrophysical Journal Letters, 616(2), L159.
Blumenthal, G. R., & Gould, R. J. (1970). Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases. Reviews of Modern Physics, 42(2), 237–271.
Blandford, R. D., & Rees, M. J. (1974). A ‘twin-exhaust’model for double radio sources. Monthly Notices of the Royal Astronomical Society, 169(3), 395-415.
De Young, D. S. (1993). The physics of extragalactic radio sources. University of Chicago Press.
de Gouveia Dal Pino, E. M., & Lazarian, A. (2005). Magnetic reconnection and cosmic rays in astrophysical plasmas. Advances in Space Research, 35(5), 908-918.
Drury, L. O. (1983). An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Reports on Progress in Physics, 46(8), 973–1027.
Falcke, H., & Biermann, P. L. (1995). The jet/disk symbiosis. I.Interpretation of the radio/UV spectra of quasars and radio galaxies. Astronomy and Astrophysics, 293, 665–682.
Jokipii, J. R. (1987). Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophysical Journal, 313, 842.
Jones, F. C., & Ellison, D. C. (1991). The plasma physics of shock acceleration. Space Science Reviews, 58(3-4), 259-346.
Kardashev, N. S. (2010). Cosmic jets (a review). Astronomy Reports, 54(12), 1135-1159.
Kaiser, C. R., Schoenmakers, R. H. M., & Röttgering, H. J. A. (2000). A Semi-analytical Model for the Radio Emission from Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources. Mon. Not. R. Astron. Soc., 315(3), 381–388.
Komissarov, S. S. (1999). A Godunov-type scheme for relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 303(2), 343-366.
Kylafis, N. D. (1983). The role of Comptonization in active galactic nuclei. In: Active Galactic Nuclei (pp. 161–189). Springer, Berlin, Heidelberg.
McNamara, B. R., & Nulsen, P. E. (2007). Heating hot atmospheres with active galactic nuclei. Annual Review of Astronomy and Astrophysics, 45, 117-175.
Meier, D. L., Koide, S., & Uchida, Y. (2001). Magnetohydrodynamic production of relativistic jets. Science, 291(5501), 84-92.
Nandra, K., et al. (2013). The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv preprint arXiv:1306.2307.
Ostrowski, M. (1998). Particle acceleration by stochastic electric fields in AGN jets. Astronomy and Astrophysics, 335, 134-140.
Padovani, P. (2017). The faint radio sky: radio astronomy becomes mainstream. Astronomy & Astrophysics Review, 25(1), 2.
Rybicki, G. B., & Lightman, A. P. (1979). Radiative processes in astrophysics. Wiley.
Scheuer, P. A. G. (1974). Models of extragalactic radio sources with a continuous energy supply from a central object. Monthly Notices of the Royal Astronomical Society, 166(3), 513-528.
van Breugel, W., Miley, G., & Heckman, T. (1985). Jet-cloud interactions in powerful radio sources. The Astrophysical Journal, 293, 83-93.
Wagner, S. J., & Bicknell, G. V. (2011). The Interaction of Jets with the Interstellar Medium. The Astrophysical Journal, 728(1), 29.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Krish Jhurani; Moninder Modgil
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.