A Multi-Modality Magnetic Resonance Imaging Model for Predicting Traumatic Brain Injury Outcomes

Authors

  • Shruti Vadlakonda River Hill High School
  • Dr. Raymond Koehler Johns Hopkins University School of Medicine
  • Janine Sharbaugh River Hill High School

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5197

Keywords:

MRI, TBI, Traumatic Brain Injury, Magnetic Resonance Imaging, Behavioral Tests, Prognostic Model, Outcomes, Multimodality

Abstract

Traumatic Brain Injury (TBI) is a heterogenous injury and a leading cause of long-term deficits and mortality in the United States. In order to improve TBI outcomes, an effective prognostication tool is necessary. Standard imaging modalities, computerized tomography (CT) and magnetic resonance imaging (MRI), have a limited ability to predict TBI outcomes. Currently, advanced MRI techniques are being studied for their efficacy. The aim of this study is to determine whether a multimodality MRI approach is superior to a single modality MRI approach in determining clinical outcomes of TBI. A secondary data analysis was conducted on TBI data obtained from 31 rat brains; 3-day MRI data in the Ipsilateral Perilesion Cortex and 28-day Behavioral Test data (Novel Object Recognition, Barnes Maze, and Open Field Test Total Distance and Total Act Time) were analyzed. A Best Subset Analysis was conducted for each of the behavioral tests. Three out of four behavioral tests show improved adjusted R2 values for models containing more than one imaging modality. A Multiple Linear Regression Analysis was then conducted on the MRIs from the highest predictive model determined by Best Subset Analysis. This analysis shows that a multimodality MRI approach can explain 25.2% of the variability in behavioral outcomes in the Novel Object Recognition Test with a P value of 0.012. Thus, the study demonstrates that a multi-modality MRI approach has a potential for effectively diagnosing and predicting TBI outcomes.

Downloads

Download data is not yet available.

Author Biographies

Dr. Raymond Koehler, Johns Hopkins University School of Medicine

Titles
  • Professor of Anesthesiology and Critical Care Medicine
Departments / Divisions
  • Anesthesiology and Critical Care Medicine

Janine Sharbaugh, River Hill High School

Advanced Research Teacher at River Hill High School, Clarksville, MD, U.S.A.

References or Bibliography

Dong, Y., Gu, Y., Lu, J., Wan, J., Jiang, S., Koehler, R. C., Wang, J., & Zhou, J. (2022). Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Detecting Severity and Predicting Outcome after Traumatic Brain Injury in Rats. Neurotrauma Reports, 3(1), 261–275. https://doi.org/10.1089/neur.2021.0064

Edlow, B. L., & Wu, O. (2012). Advanced Neuroimaging in Traumatic Brain Injury. Seminars in Neurology, 32(4), 374–400. https://doi.org/10.1055/s-0032-1331810

Gordon, E. M., May, G. J., & Nelson, S. M. (2019). MRI-based measures of intracortical myelin are sensitive to a history of TBI and are associated with functional connectivity. NeuroImage, 200, 199–209. https://doi.org/10.1016/j.neuroimage.2019.06.026

Hao, X., Xu, D., Bansal, R., Dong, Z., Liu, J., Wang, Z., Kangarlu, A., Liu, F., Duan, Y., Shova, S., Gerber, A. J., & Peterson, B. S. (2011). Multimodal magnetic resonance imaging: The coordinated use of multiple, mutually informative probes to understand brain structure and function. Human Brain Mapping, 34(2), 253–271. https://doi.org/10.1002/hbm.21440

Humble, S. S., Wilson, L. D., Wang, L., Long, D. A., Smith, M. A., Siktberg, J. C., Mirhoseini, M. F., Bhatia, A., Pruthi, S., Day, M. A., Muehlschlegel, S., & Patel, M. B. (2018). Prognosis of Diffuse Axonal Injury with Traumatic Brain Injury. The Journal of Trauma and Acute Care Surgery, 85(1), 155–159. https://doi.org/10.1097/TA.0000000000001852

Hutchinson, E. B., Schwerin, S. C., Radomski, K. L., Irfanoglu, M. O., Juliano, S. L., & Pierpaoli, C. M. (2016). Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock (Augusta, Ga.), 46(3 Suppl 1), 167–176. https://doi.org/10.1097/SHK.0000000000000659

Irimia, A., Wang, B., Aylward, S. R., Prastawa, M. W., Pace, D. F., Gerig, G., Hovda, D. A., Kikinis, R., Vespa, P. M., & Van Horn, J. D. (2012). Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction. NeuroImage : Clinical, 1(1), 1–17. https://doi.org/10.1016/j.nicl.2012.08.002

Koerte, I. K., Hufschmidt, J., Muehlmann, M., Lin, A. P., & Shenton, M. E. (2016). Advanced Neuroimaging of Mild Traumatic Brain Injury. In D. Laskowitz & G. Grant (Eds.), Translational Research in Traumatic Brain Injury. CRC Press/Taylor and Francis Group. http://www.ncbi.nlm.nih.gov/books/NBK326714/

Levine, B., Kovacevic, N., Nica, E. I., Schwartz, M. L., Gao, F., & Black, S. E. (2013). Quantified MRI and cognition in TBI with diffuse and focal damage. NeuroImage. Clinical, 2, 534–541. https://doi.org/10.1016/j.nicl.2013.03.015

Lunkova, E., Guberman, G. I., Ptito, A., & Saluja, R. S. (2021). Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Human Brain Mapping, 42(16), 5477–5494. https://doi.org/10.1002/hbm.25630

McMahon, P. J., Panczykowski, D. M., Yue, J. K., Puccio, A. M., Inoue, T., Sorani, M. D., Lingsma, H. F., Maas, A. I. R., Valadka, A. B., Yuh, E. L., Mukherjee, P., Manley, G. T., Okonkwo, D. O., Casey, S. S., Cheong, M., Cooper, S. R., Dams-O’Connor, K., Gordon, W. A., Hricik, A. J., … Vassar, M. J. (2015). Measurement of the Glial Fibrillary Acidic Protein and Its Breakdown Products GFAP-BDP Biomarker for the Detection of Traumatic Brain Injury Compared to Computed Tomography and Magnetic Resonance Imaging. Journal of Neurotrauma, 32(8), 527–533. https://doi.org/10.1089/neu.2014.3635

Palacios, E. M., Yuh, E. L., Mac Donald, C. L., Bourla, I., Wren-Jarvis, J., Sun, X., Vassar, M. J., Diaz-Arrastia, R., Giacino, J. T., Okonkwo, D. O., Robertson, C. S., Stein, M. B., Temkin, N., McCrea, M. A., Levin, H. S., Markowitz, A. J., Jain, S., Manley, G. T., Mukherjee, P., & TRACK-TBI Investigators. (2022). Diffusion Tensor Imaging Reveals Elevated Diffusivity of White Matter Microstructure that Is Independently Associated with Long-Term Outcome after Mild Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 39(19–20), 1318–1328. https://doi.org/10.1089/neu.2021.0408

Pugh, M. J., Kennedy, E., Prager, E. M., Humpherys, J., Dams-O’Connor, K., Hack, D., McCafferty, M. K., Wolfe, J., Yaffe, K., McCrea, M., Ferguson, A. R., Lancashire, L., Ghajar, J., & Lumba-Brown, A. (2021). Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization. Journal of Neurotrauma, 38(23), 3222–3234. https://doi.org/10.1089/neu.2021.0059

Shah, S. A., Lowder, R. J., & Kuceyeski, A. (2020). Quantitative multimodal imaging in traumatic brain injuries producing impaired cognition. Current Opinion in Neurology, 33(6), 691–698. https://doi.org/10.1097/WCO.0000000000000872

Shahim, P., Politis, A., van der Merwe, A., Moore, B., Chou, Y.-Y., Pham, D. L., Butman, J. A., Diaz-Arrastia, R., Gill, J. M., Brody, D. L., Zetterberg, H., Blennow, K., & Chan, L. (2020). Neurofilament light as a biomarker in traumatic brain injury. Neurology, 95(6), e610–e622. https://doi.org/10.1212/WNL.0000000000009983

Wang, H., Baker, E. W., Mandal, A., Pidaparti, R. M., West, F. D., & Kinder, H. A. (2021). Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model. Neural Regeneration Research, 16(2), 338–344. https://doi.org/10.4103/1673-5374.290915

Wang, W., Zhang, H., Lee, D.-H., Yu, J., Cheng, T., Hong, M., Jiang, S., Fan, H., Huang, X., Zhou, J., & Wang, J. (2017). Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury. Brain, Behavior, and Immunity, 64, 344–353. https://doi.org/10.1016/j.bbi.2017.04.019

Zhang, J., Puvenna, V., & Janigro, D. (2016). Biomarkers of Traumatic Brain Injury and Their Relationship to Pathology. In D. Laskowitz & G. Grant (Eds.), Translational Research in Traumatic Brain Injury. CRC Press/Taylor and Francis Group. http://www.ncbi.nlm.nih.gov/books/NBK326724/

Zhang, H., Wang, W., Jiang, S., Zhang, Y., Heo, H.-Y., Wang, X., Peng, Y., Wang, J., & Zhou, J. (2017). Amide proton transfer-weighted MRI detection of traumatic brain injury in rats. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 37(10), 3422–3432. https://doi.org/10.1177/0271678X17690165

Published

11-30-2023

How to Cite

Vadlakonda, S., Koehler, R., & Sharbaugh, J. (2023). A Multi-Modality Magnetic Resonance Imaging Model for Predicting Traumatic Brain Injury Outcomes. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5197

Issue

Section

HS Research Articles