K-band Absolute Magnitude Relations of Red Clump Stars Separated by Age

Authors

  • Tiffany Zhang William A. Shine Great Neck South High School
  • Nicole Spinelli William A. Shine Great Neck South High School

DOI:

https://doi.org/10.47611/jsrhs.v12i4.5196

Keywords:

K-band, I-band, Red clump, Metallicity, Age, Color, Gaia DR3, Gaia-ESO DR5, 2MASS, Distance indicator, Standard candle, Star cluster, Relations, Regressions, 2 Gyr, Population effects, Near infrared passband

Abstract

Red clump (RC) stars form a distinguishable clump on the color-magnitude diagram, making it a good distance indicator. Currently, the two main absolute magnitude estimation methods in the I-band (700–900 nm) conflict: one assumes a constant RC magnitude as supported by empirical data and one relates magnitude with other physical characteristics as supported by theoretical models. Studies attribute these discrepancies to population effects, such as dust, and recommend the K-band (2000–2400 nm) to minimize them. Past studies analyzed relations between the K-band magnitude, color, metallicity, and age, including those stratified by age at 2 Gyr. This study aims to investigate these different relations to clarify trends from past studies, discover new trends, and compare them to similar relations in the I-band. After analyzing cluster RC data from Gaia DR3, 2MASS, and Gaia-ESO DR5, K-band magnitude exhibits insignificant correlation in all relations (p>0.05) but has the greatest dependence and the least root mean square error (RMS) with metallicity in the old RC. Significant correlation was found between I-band magnitude and metallicity for all RC and young RC (p<0.05), especially the latter (R2 = 0.804). This consistency with theoretical trends suggests weaker I-band population effects than previously believed. Overall, these three relations yield more accurate predictions than the mean magnitude. Thus, studies cannot solely rely on the mean K-band or I-band magnitude to estimate distance, and magnitude relations stratified by age can potentially lead to more accurate RC distance estimations and a more accurately calibrated distance ladder.

Downloads

Download data is not yet available.

Author Biography

Nicole Spinelli, William A. Shine Great Neck South High School

Science Research and Physics Teacher, Science Department

References or Bibliography

Aidelman, Y., Cidale, L. S., Zorec, J., & Arias, M. L. (2012). Open clusters-I. Fundamental parameters of B stars in NGC 3766 and NGC 4755. Astronomy & Astrophysics, 544, A64. https://doi.org/10.1051/0004-6361/201219069

Alves, D. R. (2000). K-band calibration of the red clump luminosity. The Astrophysical Journal, 539(2), 732. https://doi.org/10.1086/309278

Baume, G., Vázquez, R. A., Carraro, G., & Feinstein, A. (2003). Photometric study of the young open cluster NGC 3293. Astronomy & Astrophysics, 402(2), 549-564. https://doi.org/10.1051/0004-6361:20030223

Bilir, S., Ak, T., Ak, S., Yontan, T., & Bostancı, Z. F. (2013a). A new absolute magnitude calibration for red clump stars. New Astronomy, 23, 88-97. https://doi.org/10.1016/j.newast.2013.03.006

Bilir, S., Önal, Ö., Karaali, S., Cabrera-Lavers, A., & Cakmak, H. (2013b). Luminosity–colour relations for red clump stars. Astrophysics and Space Science, 344, 417-427. https://doi.org/10.1007/s10509-012-1342-9

Bovy, J., Nidever, D. L., Rix, H. W., Girardi, L., Zasowski, G., Chojnowski, S. D., ... & Zamora, O. (2014). The APOGEE red-clump catalog: precise distances, velocities, and high-resolution elemental abundances over a large area of the milky way's disk. The Astrophysical Journal, 790(2), 127. https://doi.org/10.1088/0004-637X/790/2/127

Cannon, R. D. (1970). Red giants in old open clusters. Monthly Notices of the Royal Astronomical Society, 150(1), 111-135. https://doi.org/10.1093/mnras/150.1.111

Cole, A. A., Skillman, E. D., Tolstoy, E., Gallagher III, J. S., Aparicio, A., Dolphin, A. E., ... & Weisz, D. R. (2007). Leo A: a late-blooming survivor of the epoch of reionization in the local group. The Astrophysical Journal, 659(1), L17. https://doi.org/10.1093/mnras/150.1.111

Davidge, T. J. (2005). The evolved stellar content of NGC 147, NGC 185, and NGC 205. The Astronomical Journal, 130(5), 2087. https://doi.org/10.1093/mnras/150.1.111

Gilmore, G. (2022). ESO public survey programme Gaia-ESO spectroscopic survey, Data Release DR5. ESO. https://www.eso.org/rm/api/v1/public/releaseDescriptions/191.

Girardi, L., & Salaris, M. (2001). Population effects on the red giant clump absolute magnitude, and distance determinations to nearby galaxies. Monthly Notices of the Royal Astronomical Society, 323(1), 109-129. https://doi.org/10.1046/j.1365-8711.2001.04084.x

Girardi, L. (2016). Red clump stars. Annual Review of Astronomy and Astrophysics, 54, 95-133. https://doi.org/10.1146/annurev-astro-081915-023354

Grocholski, A. J., & Sarajedini, A. (2002). WIYN open cluster study. X. The K-band magnitude of the red clump as a distance indicator. The Astronomical Journal, 123(3), 1603. https://doi.org/10.1086/339027

Jackson, R. J., Jeffries, R. D., Wright, N. J., Randich, S., Sacco, G., Bragaglia, A., ... & Jiménez-Esteban, F. (2022). The Gaia–ESO Survey: Membership probabilities for stars in 63 open and 7 globular clusters from 3D kinematics. Monthly Notices of the Royal Astronomical Society, 509(2), 1664-1680. https://doi.org/10.1093/mnras/stab3032

Kniazev, A. Y., Grebel, E. K., Pustilnik, S. A., Pramskij, A. G., & Zucker, D. B. (2005). Spectrophotometry of Sextans A and B: chemical abundances of H II regions and planetary nebulae. The Astronomical Journal, 130(4), 1558. https://doi.org/10.1086/432931

Laney, C. D., Joner, M. D., & Pietrzyński, G. (2012). A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars. Monthly Notices of the Royal Astronomical Society, 419(2), 1637-1641. https://doi.org/10.1111/j.1365-2966.2011.19826.x

Lee, M. G., & Kim, S. C. (2000). Stellar populations of the Sagittarius dwarf irregular galaxy. The Astronomical Journal, 119(2), 777. https://doi.org/10.1086/301211

Mallory, K., Calzetti, D., & Lin, Z. (2022). Dust Emission as a Function of Stellar Population Age in the Nearby Galaxy M33. The Astrophysical Journal, 933(2), 156. https://doi.org/10.3847/1538-4357/ac7227

Marrese, P. M., Marinoni, S., Fabrizio, M., & Altavilla, G. (2019). Gaia Data Release 2. Cross-match with external catalogues: algorithms and results. Astronomy and Astrophysics, 621, A144. https://doi.org/10.1051/0004-6361/201834142

Nataf, D. M., Cassisi, S., Casagrande, L., Yuan, W., & Riess, A. G. (2021). On the color–metallicity relation of the red clump and the reddening toward the Magellanic Clouds. The Astrophysical Journal, 910(2), 121. https://doi.org/10.3847/1538-4357/abe530

Paczyński, B., & Stanek, K. Z. (1998). Galactocentric distance with the OGLE and Hipparcos red clump stars. The Astrophysical Journal, 494(2), L219. https://doi.org/10.1086/311181

Parada, J., Heyl, J., Richer, H., Ripoche, P., & Rousseau-Nepton, L. (2021). Carbon stars as standard candles–II. The median J magnitude as a distance indicator. Monthly Notices of the Royal Astronomical Society, 501(1), 933-947. https://doi.org/10.1093/mnras/staa3750

Percival, S. M., & Salaris, M. (2003). An empirical test of the theoretical population corrections to the red clump absolute magnitude. Monthly Notices of the Royal Astronomical Society, 343(2), 539-546. https://doi.org/10.1046/j.1365-8711.2003.06691.x

Perryman, M. A., Lindegren, L., Kovalevsky, J., Hoeg, E., Bastian, U., Bernacca, P. L., ... & Petersen, C. S. (1997). The HIPPARCOS catalogue. Astronomy and Astrophysics, Vol. 323, p. L49-L52, 323, L49-L52. https://ui.adsabs.harvard.edu/abs/1997A%26A...323L..49P/abstract

Pietrzyński, G., Górski, M., Gieren, W., Laney, D., Udalski, A., & Ciechanowska, A. (2010). The Araucaria project. Population effects on the V-and I-band magnitudes of red clump stars. The Astronomical Journal, 140(4), 1038. https://doi.org/10.1088/0004-6256/140/4/1038

Piotto, G., King, I. R., Djorgovski, S. G., Sosin, C., Zoccali, M., Saviane, I., ... & Renzini, A. (2002). HST color-magnitude diagrams of 74 galactic globular clusters in the HST and bands. Astronomy & Astrophysics, 391(3), 945-965. https://doi.org/10.1051/0004-6361:20020820

Pucha, R., Carlin, J. L., Willman, B., Strader, J., Sand, D. J., Bechtol, K., ... & Romanowsky, A. J. (2019). Hyper Wide Field Imaging of the Local Group Dwarf Irregular Galaxy IC 1613: An Extended Component of Metal-poor Stars. The Astrophysical Journal, 880(2), 104. https://doi.org/10.3847/1538-4357/ab29fb

Reid, I. N. (1999). The HR diagram and the Galactic distance scale after Hipparcos. Annual Review of Astronomy and Astrophysics, 37(1), 191-237. https://doi.org/10.1146/annurev.astro.37.1.191

Rieke, G. H., & Lebofsky, M. J. (1985). The interstellar extinction law from 1 to 13 microns. The Astrophysical Journal, 288, 618-621. https://doi.org/10.1086/162827

Ruiz-Lara, T., Gallart, C., Monelli, M., Fritz, T. K., Battaglia, G., Cassisi, S., ... & Salazar-González, J. J. (2021). Dissecting the stellar content of Leo I: a dwarf irregular caught in transition. Monthly Notices of the Royal Astronomical Society, 501(3), 3962-3980. https://doi.org/10.1093/mnras/staa3871

Sarajedini, A. (1999). WIYN open cluster study. III. The observed variation of the red clump luminosity and color with metallicity and age. The Astronomical Journal, 118(5), 2321. https://doi.org/10.1086/301112

Sohn, S. T., Majewski, S. R., Munoz, R. R., Kunkel, W. E., Johnston, K. V., Ostheimer, J. C., ... & Cooper, M. C. (2007). Exploring halo substructure with giant stars. X. Extended dark matter or tidal disruption?: The case for the Leo I dwarf spheroidal galaxy. The Astrophysical Journal, 663(2), 960. https://doi.org/10.1086/518302

Tully, R. B., Rizzi, L., Dolphin, A. E., Karachentsev, I. D., Karachentseva, V. E., Makarov, D. I., ... & Shaya, E. J. (2006). Associations of dwarf galaxies. The Astronomical Journal, 132(2), 729. https://doi.org/10.1086/505466

Tosi, M., Pulone, L., Marconi, G., & Bragaglia, A. (1998). Old open clusters: the interesting case of Berkeley 21. Monthly Notices of the Royal Astronomical Society, 299(3), 834-844. https://doi.org/10.1046/j.1365-8711.1998.01812.x

Udalski, A. (1998). Optical gravitational lensing experiment. population effects on the mean brightness of the red clump stars. arXiv preprint astro-ph/9807095. https://doi.org/10.48550/arXiv.astro-ph/9807095

Udalski, A. (2000). The Optical gravitational lensing experiment: Red clump stars as a distance indicator. The Astrophysical Journal, 531(1), L25. https://doi.org/10.1086/312513

Vallenari, A., Brown, A. G. A., & Prusti, T. (2022). Gaia Data Release 3. Summary of the content and survey properties. Astronomy & Astrophysics, 616. https://doi.org/10.1051/0004-6361/202243940

Venn, K. A., Lennon, D. J., Kaufer, A., McCarthy, J. K., Przybilla, N., Kudritzki, R. P., ... & Smartt, S. J. (2001). First stellar abundances in NGC 6822 from VLT-UVES and Keck-HIRES spectroscopy. The Astrophysical Journal, 547(2), 765. https://doi.org/10.1086/318424

Weisz, D. R., Dalcanton, J. J., Williams, B. F., Gilbert, K. M., Skillman, E. D., Seth, A. C., ... & Zaritsky, D. (2011). The ACS nearby galaxy survey treasury. VIII. The global star formation histories of 60 dwarf galaxies in the local volume. The Astrophysical Journal, 739(1), 5. https://doi.org/10.1088/0004-637X/739/1/5

Published

11-30-2023

How to Cite

Zhang, T., & Spinelli, N. (2023). K-band Absolute Magnitude Relations of Red Clump Stars Separated by Age. Journal of Student Research, 12(4). https://doi.org/10.47611/jsrhs.v12i4.5196

Issue

Section

HS Research Articles