Time-Series Signals of Affect and Neural Dynamics with Technology to Identify Depression Risk
DOI:
https://doi.org/10.47611/jsrhs.v12i4.5142Keywords:
affect dynamics, depression, EEG, smartphone applications, time series, time signalsAbstract
Despite extensive research documenting the impact of depression on basic human developmental parameters (employment, health, education, social roles, and overall quality of life), multiple individual and systemic barriers limit accessibility to clinical assistance among vulnerable populations. Research-backed digital interventions, such as smartphone applications, may serve as convenient and reliable tools for detecting and monitoring depressive symptoms and attenuate the increasing pressure on conventional mental health resources. This review evaluates the significance of key time-series signals of affect dynamics (average levels, granularity, variability, instability, inertia) and electroencephalographic (EEG) patterns (power spectrum of frequency bands, alpha asymmetry) in predicting critical transitions in depressive symptom severity. An evidence-based prototype for a smartphone application that can reliably integrate multivariate time-series signals of affect dynamics and neural oscillations is proposed, to prospectively anticipate and detect affective abnormalities with greater accuracy in individuals susceptible to depression.
Downloads
References or Bibliography
aan het Rot, M., Hogenelst, K., & Schoevers, R. A. (2012). Mood disorders in everyday life: a systematic review of
experience sampling and ecological momentary assessment studies. Clinical psychology review, 32(6),
-523. https://doi.org/10.1016/j.cpr.2012.05.007
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2018). Automated EEG-based
screening of depression using deep convolutional neural network. Computer methods and programs in
biomedicine, 161, 103-113. https://doi.org/10.1016/j.cmpb.2018.04.012
Ahern, G. L., & Schwartz, G. E. (1985). Differential lateralization for positive and negative emotion in the human
brain: EEG spectral analysis. Neuropsychologia, 23(6), 745-755.
https://doi.org/10.1016/0028-3932(85)90081-8
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.).
https://doi.org/10.1176/appi.books.9780890425596
American Psychiatric Association. (2022). The App Evaluation Model. Www.psychiatry.org.
https://www.psychiatry.org/psychiatrists/practice/mental-health-apps/the-app-evaluation-model
ASPE. (1996, August 20). Health Insurance Portability and Accountability Act of 1996. ASPE.
https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-1996
Badcock, N. A., Mousikou, P., Mahajan, Y., De Lissa, P., Thie, J., & McArthur, G. (2013). Validation of the Emotiv
EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ, 1, e38.
https://doi.org/10.7717/peerj.38
Bakker, D., & Rickard, N. (2019). Engagement with a cognitive behavioural therapy mobile phone app predicts
changes in mental health and wellbeing: MoodMission. Australian Psychologist, 54(4), 245-260.
https://doi.org/10.1111/ap.12383
Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A., & Rushby, J. A. (2007). EEG differences between
eyes-closed and eyes-open resting conditions. Clinical neurophysiology, 118(12), 2765-2773.
https://doi.org/10.1016/j.clinph.2007.07.028
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression.
Archives of general psychiatry, 4(6), 561-571. https://doi.org/10.1001/archpsyc.1961.01710120031004
Beck, A., Crain, A. L., Solberg, L. I., Unützer, J., Glasgow, R. E., Maciosek, M. V., & Whitebird, R. (2011). Severity
of depression and magnitude of productivity loss. The Annals of Family Medicine, 9(4), 305-311.
https://doi.org/10.1370/afm.1260
Bos, E. H., de Jonge, P., & Cox, R. F. (2019). Affective variability in depression: Revisiting the inertia–instability
paradox. British Journal of Psychology, 110(4), 814-827. https://doi.org/10.1111/bjop.12372
Bosley, H. G., Soyster, P. D., & Fisher, A. J. (2019). Affect dynamics as predictors of symptom severity and
treatment response in mood and anxiety disorders: Evidence for specificity. Journal for Person-Oriented
Research, 5(2), 101. https://doi.org/10.17505/jpor.2019.09
Burchert, S., Kerber, A., Zimmermann, J., & Knaevelsrud, C. (2021). Screening accuracy of a 14-day smartphone
ambulatory assessment of depression symptoms and mood dynamics in a general population sample:
comparison with the PHQ-9 depression screening. Plos one, 16(1), e0244955.
https://doi.org/10.1371/journal.pone.0244955
Byambasuren, O., Beller, E., Hoffmann, T., & Glasziou, P. (2020). Barriers to and facilitators of the prescription of
mHealth apps in Australian general practice: qualitative study. JMIR mHealth and uHealth, 8(7), e17447.
Carswell, K., Harper-Shehadeh, M., Watts, S., van’t Hof, E., Abi Ramia, J., Heim, E., ... & van Ommeren, M.
(2018). Step-by-Step: a new WHO digital mental health intervention for depression. Mhealth, 4.
https://doi.org/10.21037/mhealth.2018.08.01
Chachamovich, E., Stefanello, S., Botega, N., & Turecki, G. (2009). Which are the recent clinical findings regarding
the association between depression and suicide?. Brazilian Journal of Psychiatry, 31, S18-S25.
https://doi.org/10.1590/s1516-44462009000500004
Chow, S. M., Ram, N., Boker, S. M., Fujita, F., & Clore, G. (2005). Emotion as a thermostat: representing emotion
regulation using a damped oscillator model. Emotion, 5(2), 208. https://doi.org/10.1037/1528-3542.5.2.208
Christianson, S. A., Saisa, J., Garvill, J., & Silfvenius, H. (1993). Hemisphere inactivation and mood-state changes.
Brain and Cognition, 23(2), 127-144. https://doi.org/10.1006/brcg.1993.1051
Coan, J. A., & Allen, J. J. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological
psychology, 67(1-2), 7-50. https://doi.org/10.1016/j.biopsycho.2004.03.002
Colla, J., Buka, S., Harrington, D., & Murphy, J. M. (2006). Depression and modernization. Social psychiatry and
psychiatric epidemiology, 41(4), 271-279. https://doi.org/10.1007/s00127-006-0032-8
Crowe, E., Daly, M., Delaney, L., Carroll, S., & Malone, K. M. (2019). The intra-day dynamics of affect,
self-esteem, tiredness, and suicidality in Major Depression. Psychiatry Research, 279, 98-108.
https://doi.org/10.1016/j.psychres.2018.02.032
Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of the experience-sampling method. In Flow and
the foundations of positive psychology (pp. 35-54). Springer, Dordrecht.
https://doi.org/10.1007/978-94-017-9088-8_3
Csikszentmihalyi, M., & Seligman, M. (2000). Positive psychology. American psychologist, 55(1), 5-14.
Curtiss, J. E., Mischoulon, D., Fisher, L. B., Cusin, C., Fedor, S., Picard, R. W., & Pedrelli, P. (2021). Rising early
warning signals in affect associated with future changes in depression: a dynamical systems approach.
Psychological Medicine, 1-9. https://doi.org/10.1017/S0033291721005183
Davidson, R. J., Pizzagalli, D. A., & Nitschke, J. B. (2009). Representation and regulation of emotion in depression:
Perspectives from af ective neuroscience. The Guilford Press.
Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International
journal of neuroscience, 39(1-2), 71-89. https://doi.org/10.3109/00207458808985694
Debener, S., Minow, F., Emkes, R., Gandras, K., & De Vos, M. (2012). How about taking a low‐cost, small, and
wireless EEG for a walk?. Psychophysiology, 49(11), 1617-1621.
https://doi.org/10.1111/j.1469-8986.2012.01471.x
de Jonge, M., Dekker, J. J. M., Kikkert, M. J., Peen, J., van Rijsbergen, G. D., & Bockting, C. L. H. (2017). The role
of affect in predicting depressive symptomatology in remitted recurrently depressed patients. Journal of
Af ective Disorders, 210, 66-71. https://doi.org/10.1016/j.jad.2016.12.015
Eaton, L. G., & Funder, D. C. (2001). Emotional experience in daily life: valence, variability, and rate of change.
Emotion, 1(4), 413. https://doi.org/10.1037/1528-3542.1.4.413
Ebner-Priemer, U. W., & Trull, T. J. (2009). Ecological momentary assessment of mood disorders and mood
dysregulation. Psychological assessment, 21(4), 463. https://doi.org/10.1037/a0017075
Eid, M., & Diener, E. (1999). Intraindividual variability in affect: Reliability, validity, and personality correlates.
Journal of personality and social psychology, 76(4), 662. https://doi.org/10.1037/0022-3514.76.4.662
Ellsworth, P. C., & Scherer, K. R. (2003). Appraisal processes in emotion. Oxford University Press.
Erbas, Y., Ceulemans, E., Lee Pe, M., Koval, P., & Kuppens, P. (2014). Negative emotion differentiation: Its
personality and well-being correlates and a comparison of different assessment methods. Cognition and
emotion, 28(7), 1196-1213. https://doi.org/10.1080/02699931.2013.875890
Fava, G. A., Rafanelli, C., Grandi, S., Conti, S., & Belluardo, P. (1998). Prevention of recurrent depression with
cognitive behavioral therapy: preliminary findings. Archives of general psychiatry, 55(9), 816-820.
https://doi.org/10.1001/archpsyc.55.9.816
Fawcett, J. (1993). The morbidity and mortality of clinical depression. International clinical psychopharmacology.
https://doi.org/10.1097/00004850-199300840-00002
Fingelkurts, A. A., Fingelkurts, A. A., Rytsälä, H., Suominen, K., Isometsä, E., & Kähkönen, S. (2006).
Composition of brain oscillations in ongoing EEG during major depression disorder. Neuroscience
research, 56(2), 133-144. https://doi.org/10.1016/j.neures.2006.06.006
Fleming, T., Bavin, L., Lucassen, M., Stasiak, K., Hopkins, S., & Merry, S. (2018). Beyond the trial: systematic
review of real-world uptake and engagement with digital self-help interventions for depression, low mood,
or anxiety. Journal of medical Internet research, 20(6), e9275. https://doi.org/10.2196/jmir.9275
Flor-Henry, P., Lind, J. C., & Koles, Z. J. (2004). A source-imaging (low-resolution electromagnetic tomography)
study of the EEGs from unmedicated males with depression. Psychiatry Research: Neuroimaging, 130(2),
-207. https://doi.org/10.1016/j.pscychresns.2003.08.006
Frijda, N. H., Kuipers, P., & Ter Schure, E. (1989). Relations among emotion, appraisal, and emotional action
readiness. Journal of personality and social psychology, 57(2), 212.
https://doi.org/10.1037/0022-3514.57.2.212
Garrido, S., Millington, C., Cheers, D., Boydell, K., Schubert, E., Meade, T., & Nguyen, Q. V. (2019). What works
and what doesn’t work? A systematic review of digital mental health interventions for depression and
anxiety in young people. Frontiers in psychiatry, 10, 759. https://doi.org/10.3389/fpsyt.2019.00759
Geschwind, N., Nicolson, N. A., Peeters, F., van Os, J., Barge-Schaapveld, D., & Wichers, M. (2011). Early
improvement in positive rather than negative emotion predicts remission from depression after
pharmacotherapy. European Neuropsychopharmacology, 21(3), 241-247.
https://doi.org/10.1016/j.euroneuro.2010.11.004
Geschwind, N., Peeters, F., Drukker, M., van Os, J., & Wichers, M. (2011). Mindfulness training increases
momentary positive emotions and reward experience in adults vulnerable to depression: a randomized
controlled trial. Journal of consulting and clinical psychology, 79(5), 618.
https://doi.org/10.1037/a0024595
Gotlib, I. H. (1998). EEG alpha asymmetry, depression, and cognitive functioning. Cognition & Emotion, 12(3),
-478. https://doi.org/10.1080/026999398379673
Greco, C., Matarazzo, O., Cordasco, G., Vinciarelli, A., Callejas, Z., & Esposito, A. (2021). Discriminative power of
EEG-based biomarkers in major depressive disorder: A systematic review. IEEE Access.
https://doi.org/10.1109/ACCESS.2021.3103047
Grin-Yatsenko, V. A., Baas, I., Ponomarev, V. A., & Kropotov, J. D. (2009). EEG power spectra at early stages of
depressive disorders. Journal of clinical neurophysiology, 26(6), 401-406.
https://doi.org/10.1097/WNP.0b013e3181c298fe
Grin-Yatsenko, V. A., Baas, I., Ponomarev, V. A., & Kropotov, J. D. (2010). Independent component approach to the
analysis of EEG recordings at early stages of depressive disorders. Clinical Neurophysiology, 121(3),
-289. https://doi.org/10.1016/j.clinph.2009.11.015
Gruber, J., Kogan, A., Quoidbach, J., & Mauss, I. B. (2013). Happiness is best kept stable: positive emotion
variability is associated with poorer psychological health. Emotion, 13(1), 1.
https://doi.org/10.1037/a0030262
Gu, X., Cao, Z., Jolfaei, A., Xu, P., Wu, D., Jung, T. P., & Lin, C. T. (2021). EEG-based brain-computer interfaces
(BCIs): A survey of recent studies on signal sensing technologies and computational intelligence
approaches and their applications. IEEE/ACM transactions on computational biology and bioinformatics,
(5), 1645-1666. https://doi.org/10.1109/TCBB.2021.3052811
Hallensleben, N., Spangenberg, L., Forkmann, T., Rath, D., Hegerl, U., Kersting, A., ... & Glaesmer, H. (2018).
Investigating the dynamics of suicidal ideation: Preliminary findings from a study using ecological
momentary assessments in psychiatric inpatients. Crisis: The Journal of Crisis Intervention and Suicide
Prevention, 39(1), 65. https://doi.org/10.1027/0227-5910/a000464
Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305-336.
https://doi.org/10.1080/10874208.2011.623090
Hansson, L. (2002). Quality of life in depression and anxiety. International Review of Psychiatry, 14(3), 185-189.
https://doi.org/10.1080/09540260220144966
Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of abnormal
psychology, 100(4), 535. https://doi.org/10.1037//0021-843x.100.4.535
Hidaka, B. H. (2012). Depression as a disease of modernity: explanations for increasing prevalence. Journal of
af ective disorders, 140(3), 205-214. https://doi.org/10.1016/j.jad.2011.12.036
Hoemann, K., Barrett, L. F., & Quigley, K. S. (2021). Emotional granularity increases with intensive ambulatory
assessment: Methodological and individual factors influence how much. Frontiers in psychology, 12,
https://doi.org/10.3389/fpsyg.2021.704125
Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2012).
Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social
functioning, and polygenic depression risk. Journal of Neuroscience, 32(50), 18087-18100.
https://doi.org/10.1523/JNEUROSCI.2531-12.2012
Hosseinifard, B., Moradi, M. H., & Rostami, R. (2013). Classifying depression patients and normal subjects using
machine learning techniques and nonlinear features from EEG signal. Computer methods and programs in
biomedicine, 109(3), 339-345. https://doi.org/10.1016/j.cmpb.2012.10.008
Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion dynamics and
psychological well-being: A meta-analysis. Psychological bulletin, 141(4), 901.
https://doi.org/10.1037/a0038822
Jahng, S., Wood, P. K., & Trull, T. J. (2008). Analysis of affective instability in ecological momentary assessment:
Indices using successive difference and group comparison via multilevel modeling. Psychological methods,
(4), 354. https://doi.org/10.1037/a0014173
Jaworska, N., Blier, P., Fusee, W., & Knott, V. (2012). Alpha power, alpha asymmetry and anterior cingulate cortex
activity in depressed males and females. Journal of psychiatric research, 46(11), 1483-1491.
https://doi.org/10.1016/j.jpsychires.2012.08.003
Kaiser, J., & Lutzenberger, W. (2005). Human gamma-band activity: a window to cognitive processing.
Neuroreport, 16(3), 207-211. https://doi.org/10.1097/00001756-200502280-00001
Kane, J., Cavanagh, J. F., & Dillon, D. G. (2019). Reduced theta power during memory retrieval in depressed adults.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(7), 636-643.
https://doi.org/10.1016/j.bpsc.2019.03.004
Kashdan, T. B., Barrett, L. F., & McKnight, P. E. (2015). Unpacking emotion differentiation: Transforming
unpleasant experience by perceiving distinctions in negativity. Current Directions in Psychological Science,
(1), 10-16. https://doi.org/10.1177/0963721414550708
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk
factors for common psychiatric and substance use disorders in men and women. Archives of general
psychiatry, 60(9), 929-937. https://doi.org/10.1001/archpsyc.60.9.929
Kessler, R. C. (2012). The costs of depression. Psychiatric Clinics, 35(1), 1-14.
https://doi.org/10.1016/j.psc.2011.11.005
Knott, V., Mahoney, C., Kennedy, S., & Evans, K. (2001). EEG power, frequency, asymmetry and coherence in male
depression. Psychiatry Research: Neuroimaging, 106(2), 123-140.
https://doi.org/10.1016/s0925-4927(00)00080-9
Koenigsberg, H. W. (2010). Affective instability: toward an integration of neuroscience and psychological
perspectives. Journal of personality disorders, 24(1), 60. https://doi.org/10.1521/pedi.2010.24.1.60
Koval, P., Kuppens, P., Allen, N. B., & Sheeber, L. (2012). Getting stuck in depression: The roles of rumination and
emotional inertia. Cognition & emotion, 26(8), 1412-1427. https://doi.org/10.1080/02699931.2012.667392
Koval, P., Pe, M. L., Meers, K., & Kuppens, P. (2013). Affect dynamics in relation to depressive symptoms:
variable, unstable or inert?. Emotion, 13(6), 1132. https://doi.org/10.1037/a0033579
Kullar, M., Carter, S., Hitchcock, C., Whittaker, S., Wright, A. G., & Dalgleish, T. (2023). Patterns of
emotion-network dynamics are orthogonal to mood disorder status: An experience sampling investigation.
Emotion. https://doi.org/10.1037/emo0001245
Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and psychological maladjustment.
Psychological science, 21(7), 984-991. https://doi.org/10.1177/0956797610372634
Kuppens, P., Sheeber, L. B., Yap, M. B., Whittle, S., Simmons, J. G., & Allen, N. B. (2012). Emotional inertia
prospectively predicts the onset of depressive disorder in adolescence. Emotion, 12(2), 283.
https://doi.org/10.1037/a0025046
Kuppens, P. (2015). It’s about time: A special section on affect dynamics. Emotion Review, 7(4), 297-300.
https://doi.org/10.1177/1754073915590947
Kuyken, W., Warren, F. C., Taylor, R. S., Whalley, B., Crane, C., Bondolfi, G., ... & Dalgleish, T. (2016). Efficacy of
mindfulness-based cognitive therapy in prevention of depressive relapse: an individual patient data
meta-analysis from randomized trials. JAMA psychiatry, 73(6), 565-574.
https://doi.org/10.1001/jamapsychiatry.2016.0076
Larsen, R. J. (2000). Toward a science of mood regulation. Psychological inquiry, 11(3), 129-141.
https://doi.org/10.1207/S15327965PLI1103_01
Leichsenring, F., Abbass, A., Hilsenroth, M. J., Luyten, P., Munder, T., Rabung, S., & Steinert, C. (2018). “Gold
standards,” plurality and monocultures: The need for diversity in psychotherapy. Frontiers in psychiatry, 9,
https://doi.org/10.3389/fpsyt.2018.00159
Lerner, D., Adler, D. A., Chang, H., Lapitsky, L., Hood, M. Y., Perissinotto, C., ... & Rogers, W. H. (2004).
Unemployment, job retention, and productivity loss among employees with depression. Psychiatric
Services, 55(12), 1371-1378. https://doi.org/10.1176/appi.ps.55.12.1371
Mahato, S., & Paul, S. (2019). Electroencephalogram (EEG) signal analysis for diagnosis of major depressive
disorder (MDD): a review. Nanoelectronics, Circuits and Communication Systems, 323-335.
http://dx.doi.org/10.1007/978-981-13-0776-8_30
Marshall, J. M., Dunstan, D. A., & Bartik, W. (2019). The digital psychiatrist: in search of evidence-based apps for
anxiety and depression. Frontiers in Psychiatry, 10, 831. https://doi.org/10.3389/fpsyt.2019.00831
Martin, E. A., Siegle, G. J., Steinhauer, S. R., & Condray, R. (2019). Timing matters in elaborative processing of
positive stimuli: Gamma band reactivity in schizophrenia compared to depression and healthy adults.
Schizophrenia research, 204, 111-119. https://doi.org/10.1016/j.schres.2018.08.008
Marvel, C. L., & Paradiso, S. (2004). Cognitive and neurological impairment in mood disorders. Psychiatric Clinics,
(1), 19-36. https://doi.org/10.1016/s0193-953x(03)00106-0
Marwaha, S., He, Z., Broome, M., Singh, S. P., Scott, J., Eyden, J., & Wolke, D. (2014). How is affective instability
defined and measured? A systematic review. Psychological medicine, 44(9), 1793-1808.
https://doi.org/10.1017/s0033291713002407
McLoughlin, G., Makeig, S., & Tsuang, M. T. (2014). In search of biomarkers in psychiatry: EEG‐based measures
of brain function. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(2),
-121. https://doi.org/10.1002/ajmg.b.32208
Melek, M., Manshouri, N., & KAYIKÇIOĞLU, T. (2020). Low-cost brain-computer interface using the emotiv epoc
headset based on rotating vanes. Traitement du Signal, 37(5). https://doi.org/10.18280/ts.370516
Minaeva, O., Booij, S. H., Lamers, F., Antypa, N., Schoevers, R. A., Wichers, M., & Riese, H. (2020). Level and
timing of physical activity during normal daily life in depressed and non-depressed individuals.
Translational psychiatry, 10(1), 1-11. https://doi.org/10.1038/s41398-020-00952-w
Mohr, D. C., Tomasino, K. N., Lattie, E. G., Palac, H. L., Kwasny, M. J., Weingardt, K., ... & Schueller, S. M.
(2017). IntelliCare: an eclectic, skills-based app suite for the treatment of depression and anxiety. Journal
of medical Internet research, 19(1), e6645. https://doi.org/10.2196/jmir.6645
Mummah, S. A., Robinson, T. N., King, A. C., Gardner, C. D., & Sutton, S. (2016). IDEAS (Integrate, Design,
Assess, and Share): a framework and toolkit of strategies for the development of more effective digital
interventions to change health behavior. Journal of medical Internet research, 18(12), e5927.
https://doi.org/10.2196/jmir.5927
Mumtaz, W., Malik, A. S., Yasin, M. A. M., & Xia, L. (2015). Review on EEG and ERP predictive biomarkers for
major depressive disorder. Biomedical Signal Processing and Control, 22, 85-98.
https://doi.org/10.1016/j.bspc.2015.07.003
Mumtaz, W., Xia, L., Ali, S. S. A., Yasin, M. A. M., Hussain, M., & Malik, A. S. (2017). Electroencephalogram
(EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomedical Signal
Processing and Control, 31, 108-115. https://doi.org/10.1016/j.bspc.2016.07.006
Murphy, O. W., Hoy, K. E., Wong, D., Bailey, N. W., Fitzgerald, P. B., & Segrave, R. A. (2019). Individuals with
depression display abnormal modulation of neural oscillatory activity during working memory encoding
and maintenance. Biological Psychology, 148, 107766. https://doi.org/10.1016/j.biopsycho.2019.107766
Neary, M., & Schueller, S. M. (2018). State of the field of mental health apps. Cognitive and Behavioral Practice,
(4), 531-537. https://doi.org/10.1016/j.cbpra.2018.01.002
Newman, M. G., Szkodny, L. E., Llera, S. J., & Przeworski, A. (2011). A review of technology-assisted self-help
and minimal contact therapies for anxiety and depression: is human contact necessary for therapeutic
efficacy?. Clinical psychology review, 31(1), 89-103. https://doi.org/10.1016/j.cpr.2010.09.008
Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: a review of resting state
studies. Frontiers in human neuroscience, 12, 521. https://doi.org/10.3389/fnhum.2018.00521
One Mind PsyberGuide. (2016). App Guide | PsyberGuide. One Mind PsyberGuide.
https://onemindpsyberguide.org/apps/
Ormel, J., Von Korff, M., Van den Brink, W., Katon, W., Brilman, E., & Oldehinkel, T. (1993). Depression, anxiety,
and social disability show synchrony of change in primary care patients. American Journal of Public
Health, 83(3), 385-390. https://doi.org/10.2105/ajph.83.3.385
Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., ... & Schatzberg, A. F. (2016). Major
depressive disorder. Nature reviews Disease primers, 2(1), 1-20. https://doi.org/10.1038/nrdp.2016.65
Oud, M., De Winter, L., Vermeulen-Smit, E., Bodden, D., Nauta, M., Stone, L., ... & Stikkelbroek, Y. (2019).
Effectiveness of CBT for children and adolescents with depression: A systematic review and
meta-regression analysis. European psychiatry, 57, 33-45. https://doi.org/10.1016/j.eurpsy.2018.12.008
Parks, A. C., Williams, A. L., Tugade, M. M., Hokes, K. E., Honomichl, R. D., & Zilca, R. D. (2018). Testing a
scalable web and smartphone based intervention to improve depression, anxiety, and resilience: A
randomized controlled trial. International Journal of Wellbeing, 8(2). https://doi.org/10.5502/ijw.v8i2.745
Peeters, F., Berkhof, J., Delespaul, P., Rottenberg, J., & Nicolson, N. A. (2006). Diurnal mood variation in major
depressive disorder. Emotion, 6(3), 383. https://doi.org/10.1037/1528-3542.6.3.383
Pyne, J. M., Patterson, T. L., Kaplan, R. M., Gillin, J. C., Koch, W. L., & Grant, I. (1997). Assessment of the quality
of life of patients with major depression. Psychiatric services. https://doi.org/10.1176/ps.48.2.224
Quiroga, C. V., Janosz, M., Bisset, S., & Morin, A. J. (2013). Early adolescent depression symptoms and school
dropout: Mediating processes involving self-reported academic competence and achievement. Journal of
Educational Psychology, 105(2), 552. https://doi.org/10.1037/a0031524
Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., ... & Schmidt, B. L. (2016). Rapid and
sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with
life-threatening cancer: a randomized controlled trial. Journal of psychopharmacology, 30(12), 1165-1180.
https://doi.org/10.1177/0269881116675512
Rucci, P., Frank, E., Calugi, S., Miniati, M., Benvenuti, A., Wallace, M., ... & Cassano, G. B. (2011). Incidence and
predictors of relapse during continuation treatment of major depression with SSRI, interpersonal
psychotherapy, or their combination. Depression and Anxiety, 28(11), 955-962.
https://doi.org/10.1002/da.20894
Schaffer, C. E., Davidson, R. J., & Saron, C. (1983). Frontal and parietal electroencephalogram asymmetry in
depressed and nondepressed subjects. Biological psychiatry.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., ... & Sugihara, G. (2009).
Early-warning signals for critical transitions. Nature, 461(7260), 53-59.
https://doi.org/10.1038/nature08227
Schwerdtfeger, A., & Friedrich-Mai, P. (2009). Social interaction moderates the relationship between depressive
mood and heart rate variability: evidence from an ambulatory monitoring study. Health Psychology, 28(4),
https://doi.org/10.1037/a0014664
Segal, Z., Williams, M., & Teasdale, J. (2018). Mindfulness-based cognitive therapy for depression. Guilford
Publications.
Segrave, R. A., Thomson, R. H., Cooper, N. R., Croft, R. J., Sheppard, D. M., & Fitzgerald, P. B. (2010). Upper
alpha activity during working memory processing reflects abnormal inhibition in major depression. Journal
of af ective disorders, 127(1-3), 191-198. https://doi.org/10.1016/j.jad.2010.05.022
Seguin, M., Lesage, A., Turecki, G., Bouchard, M., Chawky, N., Tremblay, N., ... & Guy, A. (2007). Life trajectories
and burden of adversity: mapping the developmental profiles of suicide mortality. Psychological medicine,
(11), 1575-1583. https://doi.org/10.1017/s0033291707000955
Shen, N., Levitan, M. J., Johnson, A., Bender, J. L., Hamilton-Page, M., Jadad, A. A. R., & Wiljer, D. (2015).
Finding a depression app: a review and content analysis of the depression app marketplace. JMIR mHealth
and uHealth, 3(1), e3713. https://doi.org/10.2196/mhealth.3713
Shephard, R. J., & Rode, A. (1996). The Health Consequences of'Modernisation': Evidence from Circumpolar
Peoples (Vol. 17). Cambridge University Press. https://doi.org/10.1017/CBO9780511983726
Siegle, G. J., Condray, R., Thase, M. E., Keshavan, M., & Steinhauer, S. R. (2010). Sustained gamma-band EEG
following negative words in depression and schizophrenia. International Journal of Psychophysiology,
(2), 107-118. https://doi.org/10.1016/j.ijpsycho.2008.04.008
Smidt, K. E., & Suvak, M. K. (2015). A brief, but nuanced, review of emotional granularity and emotion
differentiation research. Current Opinion in Psychology, 3, 48-51.
https://doi.org/10.1016/j.copsyc.2015.02.007
Smit, D. J. A., Posthuma, D., Boomsma, D. I., & De Geus, E. J. C. (2007). The relation between frontal EEG
asymmetry and the risk for anxiety and depression. Biological psychology, 74(1), 26-33.
https://doi.org/10.1016/j.biopsycho.2006.06.002
Sobocki, P., Jönsson, B., Angst, J., & Rehnberg, C. (2006). Cost of depression in Europe. Journal of Mental Health
Policy and Economics.
Solomon, D. A., Keller, M. B., Leon, A. C., Mueller, T. I., Lavori, P. W., Shea, M. T., ... & Endicott, J. (2000).
Multiple recurrences of major depressive disorder. American Journal of Psychiatry, 157(2), 229-233.
https://doi.org/10.1176/appi.ajp.157.2.229
Spironelli, C., Maffei, A., Romeo, Z., Piazzon, G., Padovan, G., Magnolfi, G., ... & Angrilli, A. (2020). Evidence of
language-related left hypofrontality in Major Depression: An EEG Beta band study. Scientific reports,
(1), 1-12. https://doi.org/10.1038/s41598-020-65168-w
Starr, L. R., Hershenberg, R., Li, Y. I., & Shaw, Z. A. (2017). When feelings lack precision: Low positive and
negative emotion differentiation and depressive symptoms in daily life. Clinical Psychological Science,
(4), 613-631. https://doi.org/10.1177/2167702617694657
Statista. (2020, August 20). Number of Smartphone Users Worldwide 2014-2020 | Statista. Statista; Statista.
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: a
meta-analytic review. Journal of abnormal psychology, 115(4), 715.
https://doi.org/10.1037/0021-843X.115.4.715
Thompson, R. J., Mata, J., Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Gotlib, I. H. (2012). The everyday
emotional experience of adults with major depressive disorder: Examining emotional instability, inertia,
and reactivity. Journal of abnormal psychology, 121(4), 819. https://doi.org/10.1037/a0027978
Thompson, R. J., Boden, M. T., & Gotlib, I. H. (2017). Emotional variability and clarity in depression and social
anxiety. Cognition and Emotion, 31(1), 98-108. https://doi.org/10.1080/02699931.2015.1084908
Tomarken, A. J., Davidson, R. J., & Henriques, J. B. (1990). Resting frontal brain asymmetry predicts affective
responses to films. Journal of personality and social psychology, 59(4), 791.
https://doi.org/10.1037//0022-3514.59.4.791
Torous, J., Firth, J., Huckvale, K., Larsen, M. E., Cosco, T. D., Carney, R., ... & Christensen, H. (2018). The
emerging imperative for a consensus approach toward the rating and clinical recommendation of mental
health apps. The Journal of nervous and mental disease, 206(8), 662-666.
https://doi.org/10.1097/NMD.0000000000000864
Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory assessment. Annual review of clinical psychology, 9, 151.
https://doi.org/10.1146/annurev-clinpsy-050212-185510
Trull, T. J., & Ebner-Priemer, U. W. (2009). Using experience sampling methods/ecological momentary assessment
(ESM/EMA) in clinical assessment and clinical research: introduction to the special section.
https://doi.org/10.1037/a0017653
Trull, T. J., Lane, S. P., Koval, P., & Ebner-Priemer, U. W. (2015). Affective dynamics in psychopathology. Emotion
Review, 7(4), 355-361. https://doi.org/10.1177/1754073915590617
Trull, T. J., Solhan, M. B., Tragesser, S. L., Jahng, S., Wood, P. K., Piasecki, T. M., & Watson, D. (2008). Affective
instability: measuring a core feature of borderline personality disorder with ecological momentary
assessment. Journal of abnormal psychology, 117(3), 647. https://doi.org/10.1037/a0012532
Tugade, M. M., Fredrickson, B. L., & Feldman Barrett, L. (2004). Psychological resilience and positive emotional
granularity: Examining the benefits of positive emotions on coping and health. Journal of personality,
(6), 1161-1190. https://doi.org/10.1111/j.1467-6494.2004.00294.x
Turecki, G., Brent, D. A., Gunnell, D., O’Connor, R. C., Oquendo, M. A., Pirkis, J., & Stanley, B. H. (2019). Suicide
and suicide risk. Nature reviews Disease primers, 5(1), 1-22. https://doi.org/10.1038/s41572-019-0121-0
Twomey, C., & O’Reilly, G. (2017). Effectiveness of a freely available computerised cognitive behavioural therapy
programme (MoodGYM) for depression: Meta-analysis. Australian & New Zealand Journal of Psychiatry,
(3), 260-269. https://doi.org/10.1177/0004867416656258
van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., ... & Scheffer, M.
(2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of
the National Academy of Sciences, 111(1), 87-92. https://doi.org/10.1073/pnas.1312114110
Van der Gucht, K., Dejonckheere, E., Erbas, Y., Takano, K., Vandemoortele, M., Maex, E., ... & Kuppens, P. (2019).
An experience sampling study examining the potential impact of a mindfulness-based intervention on
emotion differentiation. Emotion, 19(1), 123. https://doi.org/10.1037/emo0000406
Van Der Vinne, N., Vollebregt, M. A., Van Putten, M. J., & Arns, M. (2017). Frontal alpha asymmetry as a
diagnostic marker in depression: Fact or fiction? A meta-analysis. Neuroimage: clinical, 16, 79-87.
https://doi.org/10.1016/j.nicl.2017.07.006
van Rijsbergen, G. D., Bockting, C. L., Berking, M., Koeter, M. W., & Schene, A. H. (2012). Can a one-item mood
scale do the trick? Predicting relapse over 5.5-years in recurrent depression.
https://doi.org/10.1371/journal.pone.0046796
van Rijsbergen, G. D., Bockting, C. L., Burger, H., Spinhoven, P., Koeter, M. W., Ruhé, H. G., ... & Schene, A. H.
(2013). Mood reactivity rather than cognitive reactivity is predictive of depressive relapse: a randomized
study with 5.5-year follow-up. Journal of Consulting and Clinical Psychology, 81(3), 508.
https://doi.org/10.1037/a0032223
Wells, K. B., Stewart, A., Hays, R. D., Burnam, M. A., Rogers, W., Daniels, M., ... & Ware, J. (1989). The
functioning and well-being of depressed patients: results from the Medical Outcomes Study. Jama, 262(7),
-919. https://doi.org/10.1001/jama.1989.03430070062031
Wichers, M., Geschwind, N., Jacobs, N., Kenis, G., Peeters, F., Derom, C., ... & van Os, J. (2009). Transition from
stress sensitivity to a depressive state: longitudinal twin study. The British Journal of Psychiatry, 195(6),
-503. https://doi.org/10.1192/bjp.bp.108.056853
Wichers, M., Myin-Germeys, I., Jacobs, N., Peeters, F., Kenis, G., Derom, C., ... & Van Os, J. (2007). Genetic risk
of depression and stress-induced negative affect in daily life. The British Journal of Psychiatry, 191(3),
-223. https://doi.org/10.1192/bjp.bp.106.032201
Wichers, M., Peeters, F., Geschwind, N., Jacobs, N., Simons, C. J. P., Derom, C., ... & Van Os, J. (2010). Unveiling
patterns of affective responses in daily life may improve outcome prediction in depression: a momentary
assessment study. Journal of af ective disorders, 124(1-2), 191-195.
https://doi.org/10.1016/j.jad.2009.11.010
Wichers, M., Peeters, F., Rutten, B. P., Jacobs, N., Derom, C., Thiery, E., ... & van Os, J. (2012). A time-lagged
momentary assessment study on daily life physical activity and affect. Health Psychology, 31(2), 135.
https://doi.org/10.1037/a0025688
Wichers, M., Smit, A. C., & Snippe, E. (2020). Early warning signals based on momentary affect dynamics can
expose nearby transitions in depression: a confirmatory single-subject time-series study. Journal for
Person-Oriented Research, 6(1), 1. https://doi.org/10.17505/jpor.2020.22042
Widdershoven, R. L., Wichers, M., Kuppens, P., Hartmann, J. A., Menne-Lothmann, C., Simons, C. J., &
Bastiaansen, J. A. (2019). Effect of self-monitoring through experience sampling on emotion differentiation
in depression. Journal of af ective disorders, 244, 71-77. https://doi.org/10.1016/j.jad.2018.10.092
World Health Organization. (2021). Suicide worldwide in 2019. Www.who.int.
https://www.who.int/publications/i/item/9789240026643
Wright, A. G., & Zimmermann, J. (2019). Applied ambulatory assessment: Integrating idiographic and nomothetic
principles of measurement. Psychological assessment, 31(12), 1467. https://doi.org/10.1037/pas0000685
Yan, S., Hosseinmardi, H., Kao, H. T., Narayanan, S., Lerman, K., & Ferrara, E. (2019, June). Estimating
individualized daily self-reported affect with wearable sensors. In 2019 IEEE International Conference on
Healthcare Informatics (ICHI) (pp. 1-9). IEEE. https://doi.org/10.1109/ICHI.2019.8904691
Published
How to Cite
Issue
Section
Copyright (c) 2023 Rinaz Jamal; Dr. Monica Kullar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.