Effects of Timing on the Efficacy of Stem Cell Transplantation after Acute Myocardial Infarction

Authors

  • Giovanna Monteiro Colégio 7 de Setembro
  • Catherine Ingram Colégio 7 de Setembro

DOI:

https://doi.org/10.47611/jsrhs.v12i3.5105

Keywords:

Stem Cells, Myocardial Infarction, Bone marrow stem cell, Intracoronary Injection, Stem Cell Therapy

Abstract

Acute myocardial infarction (AMI) is the blocking of coronary arteries that prevents oxygenated blood from reaching the heart tissues, resulting in damage to the myocardium and affecting heart function. This condition affects millions of people every year and is detrimental to their quality of life. Several clinical trials have investigated the efficacy of using bone marrow-derived stem cells (BMSCs) to improve heart function after AMIs. However, different variables could impact the results of the trials, one of them being the injection time of cell therapy after reperfusion. This paper aims to investigate the short-term effects of timing on the efficacy of bone marrow-derived mononuclear cell transplantation after acute myocardial infarction. A systematic literature search of PUBMED, EMBASE, European Society of Cardiology, and American Heart Association databases was made on randomized controlled trials with at least 3-month follow-up data for patients with AMI undergoing percutaneous coronary intervention (PCI) and receiving intracoronary autologous BMSC transfer subsequently. A total of 12 trials with 1061 patients were selected for analysis. Compared to baseline level, BMSC transfer within 24 hours of PCI significantly improved left ventricular ejection fraction (LVEF; 3.44% increase, 95% confidence interval [CI]: 2.20%-4.68%, P< 0.00001). The “3-7 days after PCI” subgroup also showed notable improvements in LVEF (LVEF; 2.52% increase, 95% confidence interval [CI]: 1.01%-4.04%, P = 0.001). However, in the subgroups that received BMSC transplantation either 7-14 days after PCI or later than 15 days after PCI, there was no significant effect on treatment outcome.

Downloads

Download data is not yet available.

Author Biography

Catherine Ingram, Colégio 7 de Setembro

Biology Teacher at Colégio 7 de Setembro

References or Bibliography

Assmus, B., SchächingerV., Teupe, C., Britten, M., Lehmann, R., DöbertN., GrünwaldF., Aicher, A., Urbich, C., Martin, H., Hoelzer, D., Dimmeler, S., & Zeiher, A. M. (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017. https://doi.org/10.1161/01.cir.0000043246.74879.cd

Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084. https://doi.org/10.1002/jcb.20886

Cleveland Clinic. (2019). Heart Attack (Myocardial Infarction) | Cleveland Clinic. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/16818-heart-attack-myocardial-infarction

Frangogiannis, N. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47. https://doi.org/10.1016/s0008-6363(01)00434-5

‌ Gilbert, S. F. (2000). Paracrine Factors. http://www.ncbi.nlm.nih.gov/books/NBK10071/

Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy. Circulation Research, 103(11), 1204–1219. https://doi.org/10.1161/circresaha.108.176826

Grajek, S., Popiel, M., Gil, L., Breborowicz, P., Lesiak, M., Czepczynski, R., Sawinski, K., Straburzynska-Migaj, E., Araszkiewicz, A., Czyz, A., Kozlowska-Skrzypczak, M., & Komarnicki, M. (2009). Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation. European Heart Journal, 31(6), 691–702. https://doi.org/10.1093/eurheartj/ehp536

Hodgkinson, C. P., Bareja, A., Gomez, J. A., & Dzau, V. J. (2016). Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circulation Research, 118(1), 95–107. https://doi.org/10.1161/circresaha.115.305373

Huang, R., Yao, K., Sun, A., Qian, J., Ge, L., Zhang, Y., Niu, Y., Wang, K., Zou, Y., & Ge, J. (2015). Timing for intracoronary administration of bone marrow mononuclear cells after acute ST-elevation myocardial infarction: a pilot study. Stem Cell Research & Therapy, 6(1). https://doi.org/10.1186/s13287-015-0102-5

Jansen of Lorkeers, S. J., Eding, J. E. C., Vesterinen, H. M., van der Spoel, T. I. G., Sena, E. S., Duckers, H. J., Doevendans, P. A., Macleod, M. R., & Chamuleau, S. A. J. (2015). Similar Effect of Autologous and Allogeneic Cell Therapy for Ischemic Heart Disease. Circulation Research, 116(1), 80–86. https://doi.org/10.1161/circresaha.116.304872

Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., Maertens, J., Rademakers, F., Dymarkowski, S., Gheysens, O., Van Cleemput, J., Bormans, G., Nuyts, J., Belmans, A., Mortelmans, L., & Boogaerts, M. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. The Lancet, 367(9505), 113–121. https://doi.org/10.1016/S0140-6736(05)67861-0

Kikuchi, K., & Poss, K. D. (2012). Cardiac Regenerative Capacity and Mechanisms. Annual Review of Cell and Developmental Biology, 28, 719–741. https://doi.org/10.1146/annurev-cellbio-101011-155739

Kikuchi-Taura, A., Okinaka, Y., Takeuchi, Y., Ogawa, Y., Maeda, M., Kataoka, Y., Yasui, T., Kimura, T., Gul, S., Claussen, C., Boltze, J., & Taguchi, A. (2020). Bone Marrow Mononuclear Cells Activate Angiogenesis via Gap Junction-Mediated Cell-Cell Interaction. Stroke, 51(4), 1279–1289. https://doi.org/10.1161/STROKEAHA.119.028072

Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., & Epstein, S. E. (2004). Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote In Vitro and In Vivo Arteriogenesis Through Paracrine Mechanisms. Circulation Research, 94(5), 678–685. https://doi.org/10.1161/01.res.0000118601.37875.ac

Krantz, D. S. (1980). Cognitive Processes and Recovery from Heart Attack: A Review and Theoretical Analysis. Journal of Human Stress, 6(3), 27–38. https://doi.org/10.1080/0097840x.1980.9936096

Kusuma, G. D., Carthew, J., Lim, R., & Frith, J. E. (2017). Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells and Development, 26(9), 617–631. https://doi.org/10.1089/scd.2016.0349

Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50(2), 280–289. https://doi.org/10.1016/j.yjmcc.2010.08.005

Perin, E. C. (2016). Intravenous, Intracoronary, Transendocardial, and Advential Delivery. Stem Cell and Gene Therapy for Cardiovascular Disease, 279–287. https://doi.org/10.1016/b978-0-12-801888-0.00022-9

Peteiro, J., Peteiro-Vázquez, J., Gacía-Campos, A., García-Bueno, L., Abugattás-de-Torres, J. P., & Castro-Beiras, A. (2011). The causes, consequences, and treatment of left or right heart failure. Vascular Health and Risk Management, 7, 237. https://doi.org/10.2147/vhrm.s10669

Renuka, S., & Sethu, G. (2015). Regeneration after Myocardial Infarction. Research Journal of Pharmacy and Technology, 8(6), 738. https://doi.org/10.5958/0974-360x.2015.00117.1

Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration, 2020.

Roncalli, J., Mouquet, F., Piot, C., Trochu, J.-N., Le Corvoisier, P., Neuder, Y., Le Tourneau, T., Agostini, D., Gaxotte, V., Sportouch, C., Galinier, M., Crochet, D., Teiger, E., Richard, M.-J., Polge, A.-S., Beregi, J.-P., Manrique, A., Carrie, D., Susen, S., & Klein, B. (2010). Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. European Heart Journal, 32(14), 1748–1757. https://doi.org/10.1093/eurheartj/ehq455

Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., Yu, J., Corti, R., Mathey, D. G., Hamm, C. W., Süselbeck, T., Assmus, B., Tonn, T., Dimmeler, S., & Zeiher, A. M. (2006). Intracoronary Bone Marrow–Derived Progenitor Cells in Acute Myocardial Infarction. New England Journal of Medicine, 355(12), 1210–1221. https://doi.org/10.1056/nejmoa060186

Segers, V. F. M., & De Keulenaer, G. W. (2021). Autocrine Signaling in Cardiac Remodeling: A Rich Source of Therapeutic Targets. Journal of the American Heart Association, 10(3). https://doi.org/10.1161/jaha.120.019169

Seropian, I. M., Toldo, S., Van Tassell, B. W., & Abbate, A. (2014). Anti-Inflammatory Strategies for Ventricular Remodeling Following ST-Segment Elevation Acute Myocardial Infarction. Journal of the American College of Cardiology, 63(16), 1593–1603. https://doi.org/10.1016/j.jacc.2014.01.014

Sid-Otmane, C., Perrault, L. P., & Ly, H. Q. (2020). Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. Journal of Translational Medicine, 18(1). https://doi.org/10.1186/s12967-020-02504-8

Sürder, D., Manka, R., Lo Cicero, V., Moccetti, T., Rufibach, K., Soncin, S., Turchetto, L., Radrizzani, M., Astori, G., Schwitter, J., Erne, P., Zuber, M., Auf der Maur, C., Jamshidi, P., Gaemperli, O., Windecker, S., Moschovitis, A., Wahl, A., Bühler, I., & Wyss, C. (2013). Intracoronary Injection of Bone Marrow–Derived Mononuclear Cells Early or Late After Acute Myocardial Infarction. Circulation, 127(19), 1968–1979. https://doi.org/10.1161/circulationaha.112.001035

Sutton, M. G. St. J., & Sharpe, N. (2000). Left Ventricular Remodeling After Myocardial Infarction. Circulation, 101(25), 2981–2988. https://doi.org/10.1161/01.cir.101.25.2981

Tang, Y. L., Zhao, Q., Zhang, Y. C., Cheng, L., Liu, M., Shi, J., Yang, Y. Z., Pan, C., Ge, J., & Phillips, M. I. (2004). Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regulatory Peptides, 117(1), 3–10. https://doi.org/10.1016/j.regpep.2003.09.005

Traverse, J. H. (2011). Effect of Intracoronary Delivery of Autologous Bone Marrow Mononuclear Cells 2 to 3 Weeks Following Acute Myocardial Infarction on Left Ventricular Function. JAMA, 306(19), 2110. https://doi.org/10.1001/jama.2011.1670

Wollert, K. C., Meyer, G. P., Müller-Ehmsen, J., Tschöpe, C., Bonarjee, V., Larsen, A. I., May, A. E., Empen, K., Chorianopoulos, E., Tebbe, U., Waltenberger, J., Mahrholdt, H., Ritter, B., Pirr, J., Fischer, D., Korf-Klingebiel, M., Arseniev, L., Heuft, H.-G., Brinchmann, J. E., & Messinger, D. (2017). Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. European Heart Journal, 38(39), 2936–2943. https://doi.org/10.1093/eurheartj/ehx188

World Health Organization (2022). “Cardiovascular Diseases.” World Health Organization. www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

‌ Xu, J., Liu, D., Zhong, Y., & Huang, R. (2017). Effects of timing on intracoronary autologous bone marrow-derived cell transplantation in acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem Cell Research & Therapy, 8(1). https://doi.org/10.1186/s13287-017-0680-5

Published

08-31-2023

How to Cite

Monteiro, G., & Ingram, C. (2023). Effects of Timing on the Efficacy of Stem Cell Transplantation after Acute Myocardial Infarction. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.5105

Issue

Section

IB Extended Essays