Perovskites: An Emerging Technology in Solar Space
DOI:
https://doi.org/10.47611/jsrhs.v12i3.5069Keywords:
Perovsites, photovoltaic, solar cells, lead, silica gel, levelized cost of energy, hysteresis.Abstract
The extent of interest which Perovsite technology is generating in solar research space is unprecedented. And there is a genuine rationale behind that. In the last one decade, the progress in efficiencies exhibited by Perovskite Solar Cells (PSCs) has gone up manifold. This is an outcome of the intensive research being done by various research organizations on efficiency enhancement of the PSCs and the various solar companies which are trying to bring this technology closer to large scale commercialization. The wide belief is that perovskites will be less expensive compared to conventional technology. While the perovskite technology is demonstrating a sea of opportunities, there is still a journey to cover. There are multiple research gaps on the road to commercialization of the perovskite technology which need to be addressed. The more important amongst them are durability and stability, rapid degradation due to UV, dissolution issue due to water exposure, degradation through oxygen and hysteresis behaviour. Having said that, the pace of research in solar space has been much faster compared to any other technology transformations the world has seen. And global warming and climate change related studies are further necessitating this pace to accelerate further. This article gives a brief history of perovskite, its technological progression, the research gaps as they stand today and what the future holds for this technology. Looking at the progress in perovskite technology, the world may not be far away from seeing a disruption in solar space.
Downloads
References or Bibliography
National Renewable Energy Laboratory NREL. (2023, April 30). Best Research Cell Efficiency Chart. Energy Analysis. https://www.nrel.gov/analysis/tech-lcoe-documentation.html.
Cai, M., Wu, Y., Wu, Chen.H., Yang, X., Qiang, Y., & Ha, L. (2016). Cost-Performance Analysis of Perovskite Solar Modules. Advanced Science. Materials Views, 6(12), 1-6. DOI: 10.1002/advs.201600269
Solarsquare (2022, December 31). A detailed overview of function, pricing, and benefits of a perovskite solar cell.
https://www.solarsquare.in/blog/perovskite-solar-cell/#:~: text=Generally%2C%20a%20Polycrystalline%20silicon%20solar,%E2%82%B97%2D8%20per%20watt.
Chowdhury, T. A., Bin Zafar, M. A., Sajjad-Ul Islam, Shahinuzzaman, M., Islam, M. A. & Khandeker, M. U. (2023). Stability of perovskite solar cells: issues and prospects. RSC Advances, 13 (3), 1787–1810. doi: 10.1039/d2ra05903g.
Nair, S., Patel, S. B. & Gohel, J. V. (2020). Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, 17, 100449. doi: 10.1016/j.mtener.2020.100449.
Meng, L., You, J. & Yang, Y. (2018). Addressing the stability issue of perovskite solar cells for commercial applications. National Communication, 9 (1), 1–4. doi: 10.1038/s41467-018-07255-1.
Bass, K. K., McAnally, R. E., Zhou, S., Djurovich, P. I., Thompson, M. E. & Melot, B. C. (2014). Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications, 50 (99), 15819–15822. doi: 10.1039/C4CC05231E.
You, J., Dou, L., Hong, Z., Li, G. & Yang, Y. (2013). Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 38 (12), 1909–1928. doi: 10.1016/J.PROGPOLYMSCI.2013.04.005.
Li, B., Li, Y., Zheng, C., Gao, D. & Huang, W. (2016). Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances, 6 (44), 38079–38091. doi: 10.1039/C5RA27424A.
Zai, H. et al. (2021). Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields. Joule, 5 (8), 2148–2163. doi: 10.1016/j.joule.2021.06.001.
Conings, B., Baeten, L., Dobbelaere, C., D’Haen, J., Manca, J. & Boyen, H. G. (2014). Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Advanced Materials, 26 (13), 2041–2046. doi: 10.1002/adma.201304803.
Ma, C., Shen, D., Qing, J., Ng, T. W., Lo, M. F. & Lee, C. S. (2018). Heat Treatment for Regenerating Degraded Low-Dimensional Perovskite Solar Cells. ACS Applied Material Interfaces, 10 (5), 4860–4865, doi: 10.1021/ACSAMI.7B15059/ASSET/IMAGES/AM-2017-15059T_M001.GIF.
Lee, S. W. et al. (2016). UV Degradation and Recovery of Perovskite Solar Cells. Scientific Reports, 6 (12), 1–10. doi: 10.1038/srep38150.
Liu, S. C. et al. (2019). Investigation of Oxygen Passivation for High-Performance All-Inorganic Perovskite Solar Cells. Journal of American Chemical Society, 141 (45), 18075–18082. doi: 10.1021/JACS.9B07182.
Ding, Y., Sugaya, M., Liu, Q., Zhou, S. & Nozaki, T. (2014). Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy, 10, 322–328. doi: 10.1016/J.NANOEN.2014.09.031.
Chen, Q. et al. (2014). Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett, 14 (7), 4158–4163. doi: 10.1021/Nl501838y.
Wu, F., Pathak, R. & Qiao, Q. (2021). Origin and alleviation of J-V hysteresis in perovskite solar cells: A short review. Catalyst Today, 374, 86–101. doi: 10.1016/J.CATTOD.2020.12.025.
Huang, Y. T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. (2021). Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology, 32 (13). doi: 10.1088/1361-6528/abcf6d.
Saranin, D. et al. (2021). Hysteresis-free perovskite solar cells with compact and nanoparticle NiO for indoor application. Solar Energy Materials and Solar Cells, 227 (4), 111095. doi: 10.1016/j.solmat.2021.111095.
Mathews, A. P. (2014). Renewable energy technologies: Panacea for world energy security and climate change. Procedia Computer Science, 32, 731–737 doi: 10.1016/j.procs.2014.05.483.
Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050. Sustainability (Switzerland), 14 (8), 1–22. doi: 10.3390/su14084792.
United Nations. (2022, December 15). United Nations Climate Action. https://www.un.org/en/climatechange/raising-ambition/renewable-energy.
Perovskite-info. (2023, April 30). An introduction to Perovskites. https://www.perovskite-info.com/introduction
ScienceDirect. (2018, December 20). Perovskites. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/perovskites.
Mindat. (2023, March 31). Perovskites. https://www.mindat.org/min-3166.html.
Nanowerk. (2021, December 31). Perovskites and their applications. https://www.nanowerk.com/what-are-perovskites.php.
Solar daily. (2023, March 31). Perovskite solar cells' instability must be addressed for global adoption. https://www.solardaily.com/reports/Perovskite_solar_cells_instability_must_be_addressed_for_global_adoption_say_Surrey_researchers_999.html.
ScienceDirect (2018, December 31). Perovskites. https://www.sciencedirect.com/topics/materials-science/perovskites.
University of Oxford PerTPV. (2018, December 31). What is Perovskite. https://pertpv.web.ox.ac.uk/article/what-is-perovskite.
PV Magazine. (2022, November 30). Perovskite: The disruptive element. https://www.pv-magazine-india.com/2022/07/08/perovskite-the-disruptive-element/.
Horváth, E., Kollár, M., Andričević, P., Rossi, L., Mettan, X., & Forró, L. (2021). Supporting Information: Fighting Health Hazards in Lead Halide Perovskite Optoelectronic Devices with Transparent Phosphate Salts. 1-11.
Bello, O. O., & Emetere, E.E. (2022). Progress and limitation of lead-free inorganic perovskites for solar cell application. ScienceDirect - Solar Cells, 243 (12), 370-380. https://doi.org/10.1016/j.solener.2022.08.018.
United Nations Home Page. United Nations Environmental Programme (2022). Lead Acid Batteries. https://www.unep.org/explore-topics/chemicals-waste/what-we-do/emerging-issues/lead-acid-batteries (Accessed : 2022-12-5).
Chetyrkina, M. R. et al. (2023). Lead, tin, bismuth or organics: Assessment of potential environmental and human health hazards originating from mature perovskite PV technology. Solar Energy Materials and Solar Cells, 252, 112177. doi: 10.1016/J.SOLMAT.2022.112177.
Pagliaro, M., Meneguzzo, F., Pagliaro, M. & Meneguzzo, F. (2019). Digital Management of Solar Energy En Route to Energy Self-Sufficiency. Global Challenges, 3 (8), 1800105. doi: 10.1002/GCH2.201800105.
Liu, Z. et al. (2022). Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule, 6 (4), 834–849. doi: 10.1016/j.joule.2022.03.003.
Zhao, Y. & Zhu, K. (2014). CH 3 NH 3 Cl-Assisted One-Step Solution Growth of CH 3 NH 3 PbI 3 : Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. The Journal of Physical Chemistry, 118 (18), 9412–9418. doi: 10.1021/jp502696w.
Zhao, Y. & Zhu, K. (2013). Charge Transport and Recombination in Perovskite (CH 3 NH 3 )PbI 3 Sensitized TiO 2 Solar Cells. Journal of Physical Chemistry, 4 (17), 2880–2884. doi: 10.1021/jz401527q.
Jiang, Q. et al. (2022). Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science, 378 (6626), 1295–1300. doi: 10.1126/SCIENCE.ADF0194/SUPPL_FILE/SCIENCE.ADF0194_SM.PDF.
M. Causa et al. (2016). The fate of electron–hole pairs in polymer: fullerene blends for organic photovoltaics. Nature Communications. 7(1), 1–10. doi: 10.1038/ncomms12556.
Mori, Y. & Funahashi, M. (2020). Bulk photovoltaic effect in organic binary systems consisting of a ferroelectric liquid crystalline semiconductor and fullerene derivatives. Organic Electron, 87, 105962. doi: 10.1016/J.ORGEL.2020.105962.
Khan, S. A. & Rahman, A. (2019). The efficiency of thin film photovoltaic paint: A brief review of Charge balancing system with wireless communication of battery management system View project Intelligent air-cushion system for tracked vehicle mobility View project. https://www.researchgate.net/publication/332762858 / (Accessed: 2022-12-5).
Santarelli, L. (2018). Organic Semiconductors-Based Devices Electrical Reliability to Environmental Stress. Ph.D. Thesis, University College London, London, U.K.
Genovese, M. P., Lightcap, I. V. & Kamat, P. V. (2012). Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells. ACS Nano, 6 (1), 865–872. doi: 10.1021/nn204381g.
Wei, Z., Zheng, X., Chen, H., Long, X., Wang, Z., & Yang, S. (2015). A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Material Chemistry, 3 (32), 16430–16434. doi: 10.1039/c5ta03802b
National Renewable Energy Laboratory NREL. (2022, December 31). Best Research Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.
Priyanka, Kajal., Verma, B, Rao, S., Power, S. (2021). Costing Analysis of Scalable Carbon-Based Perovskite Modules Using Bottom Up Technique. Wiley Online Library. Doi : 10.1002/gch2.202100070
Gautam, A. (2022). Solar Paint - The Next Big Thing in Renewable Energy. Solar Action Alliance. https://solaractionalliance.org/solar-paint/ (Accessed: 2022-12-3)
Kanmani, R., Kamalinee, M. K., Thoufic, S. M., Suganya, R., & Muthulakshmi, S. (2021). Development and Proposal System for the Formulation of Solar paint. 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, 623–627. doi: 10.1109/ICACCS51430.2021.9442003.
Akshay, V.R. (2021). Everything about the Invention of Solar Paint _ Solar Labs. https://thesolarlabs.com/ros/solar-paint/ Republic of Solar/ (Accessed: 2022-12-23).
Electrical 4U (2022, December 3). Electrostatic Precipitators. https://www.electrical4u.com/advantages-and-disadvantages-of-electrostatic-precipitator/.
Horváth, E., Kollár, M., Andričević, P., Rossi, L., Mettan, X. & Forró, L. (2021). Fighting Health Hazards in Lead Halide Perovskite Optoelectronic Devices with Transparent Phosphate Salts. ACS Applied Material Interfaces, 13 (29), 33995–34002. doi: 10.1021/ACSAMI.0C21137/SUPPL_FILE/AM0C21137_SI_002.MP4.
Gautam, A. (2021) Solar paint: next big thing in renewable. Solar Action Alliance. https://www.solarreviews.com/blog/solar-paint-hydrogen-quantum-dot-perovskite-cells (Accessed: 2022-12-03)
Solar Action Alliance. (2022, December 12) Solar paint-future of solar. https://solaractionalliance.org/solar-paint.
Kuchta, D. M. (2021). The Potential of Solar Paint: Everything You Need to Know. https://www.treehugger.com/the-potential-of-solar-paint-everything-you-need-to-know (Accessed : 2022-12-03)
Li, C., Guerrero, A., Zhong, Y & Huettner, S. (2017). Origins and mechanisms of hysteresis in organometal halide perovskites. Journal of Physics: Condensed Matter, 29 (19), 193001. doi: 10.1088/1361-648X/AA626D.
Bulloch, A., Wang, S., Ghosh, P. & Jagadamma, L. K. (2022). Hysteresis in hybrid perovskite indoor photovoltaics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380, 2221. doi: 10.1098/rsta.2021.0144.
Yun, Y., Mühlenbein, L., Knoche, D. S., Lotnyk, A. & Bhatnagar, A. (2021). Strongly enhanced and tunable photovoltaic effect in ferroelectric-paraelectric superlattices. Scientific Advances, 7 (23). doi: 10.1126/sciadv.abe4206.
Timmreck, R., Olthof, S., Leo, K. & Riede, M. K. (2010). Highly doped layers as efficient electron – hole recombination contacts for tandem organic solar cells. Journal of Applied Physics, 108 (3), 033108. doi: 10.1063/1.3467786.
Wang, M. et al. (2020). Small Molecule Modulator at the Interface for Efficient Perovskite Solar Cells with High Short-Circuit Current Density and Hysteresis Free. Advanced Electronic Materials, 6 (10), 2000604, doi: 10.1002/AELM.202000604.
Hazarika, G., Mercom Clean Energy Insights. (2022, December 3). Higher Efficiency in Perovskite-CIGS Tandem Cells. https://mercomindia.com/researchers-claim-21-and-higher-perovskite-cigs-tandem-cells/
IMEC. (2022, December 12). Four terminal perovskite-silicon PV tandem devices hit 30% efficiency. https://www.imec-int.com/en/press/first-time-four-terminal-perovskite-silicon-pv-tandem-devices-hit-30-eff.
Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(2), 38–50. doi: 10.1016/j.esr.2019.01.006.
Heo, J. H. et al. (2021). Efficient and Stable Graded CsPbI3−xBrx Perovskite Solar Cells and Submodules by Orthogonal Processable Spray Coating. Joule, 5(2), 481–494. doi: 10.1016/j.joule.2020.12.010.
Swartwout, R., Hoerantner, M. T. & Bulović, V. (2019). Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Energy and Environmental Materials, 2 (2), 119–145. doi: 10.1002/eem2.12043.
Boix, P. P., Nonomura, K., Mathews, N. & Mhashelkar, S. G. (2014). Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today, 17 (1), 16–23. doi: 10.1016/j.mattod.2013.12.002.
Zheng, L., Xuan, Y., Wang, J., Bao, S., Liu, X. & Zhang, K. (2022). Inverted perovskite/silicon V-shaped tandem solar cells with 27.6% efficiency via self-assembled monolayer-modified nickel oxide layer. Journal of Material Chemistry, 10 (13), 7251–7262. doi: 10.1039/D1TA10313J.
Al-Ashouri, A. et al. (2020). Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 370 (6522), 1300–1309. doi: 10.1126/SCIENCE.ABD4016/SUPPL_FILE/ABD4016_AL-ASHOURI_SM.PDF.
El-Atab, N., Mishra, R. B., Alshanbari, R. and Hussain, M. M. (2021). Solar Powered Small Unmanned Aerial Vehicles: A Review. Energy Technology, 9 (12), 2100587. doi: 10.1002/ENTE.202100587.
Stanford Educational Program. (2023, February 15). Unmanned Solar Powered Aircraft. http://large.stanford.edu/courses/2016/ph240/troutman2/.
Polyzoidis, C., Rogdakis, K. & Kymakis, E. (2021). Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Advanced Energy Materials, 11 (38), 2101854. doi: 10.1002/AENM.202101854.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Aditya Padgaonkar; Kavita Prabhu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.