Utilising Machine Learning to Predict Myocardial Infarction by Electrocardiogram Derived Respiration
DOI:
https://doi.org/10.47611/jsrhs.v12i3.5041Keywords:
Machine Learning, Electrocardiogram, Electrocardiogram Derived Respiration, Myocardial Infarction, Signal ProcessingAbstract
Myocardial Infarction (MI) is one of the leading causes of death. Electrocardiogram (ECG) is a non-invasive tool that is commonly used as a diagnostic tool to assess cardiac conditions. A dataset consisting ECG signals of healthy individuals and MI patients was subjected to pre-processing techniques like normalization and application of a bandpass filter. R-R peak intervals from the pre-processed ECG signals are extracted to generate the respiratory signal. The features extracted from the respiratory signal are used to predict MI. The objective of this study is to evaluate the potential of ECG derived respiratory signal (EDR) in predicting MI by utilizing machine learning techniques like random forest, linear regression, Convolutional Neural Network(CNN), Multilayer perceptron(MLP). The results of the study will examine the feasibility of using EDR in predicting MI and provide insight into the most effective machine learning technique for this application. This study will contribute to the development of new and efficient prediction methods for MI patients.
Downloads
References or Bibliography
Najarian, K., & Splinter, R. (2016). Biomedical Signal and Image Processing. https://doi.org/10.1201/b11978
Rangayyan, R. M. (2015). Biomedical Signal Analysis. doi:10.1002/9781119068129
deChazal, P., O’Dwyer, M., & Reilly, R. B. (2004). Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 51(7), 1196–1206. doi:10.1109/tbme.2004.827359
Khan Mamun, M. M., & Alouani, A. (2022). Automatic detection of heart diseases using biomedical signals: A literature review of current status and Limitations. Lecture Notes in Networks and Systems, 420–440. doi:10.1007/978-3-030-98015-3_29
Wiharto, W., Kusnanto, H., & Herianto, H. (2016). Intelligence System for diagnosis level of coronary heart disease with K-Star algorithm. Healthcare Informatics Research, 22(1), 30. doi:10.4258/hir.2016.22.1.30
Bashir, S., Qamar, U., & Khan, F. H. (2015). A multicriteria weighted vote-based classifier ensemble for heart disease prediction. Computational Intelligence, 32(4), 615–645. doi:10.1111/coin.12070
Hancock, E. W., Deal, B. J., Mirvis, D. M., Okin, P., Kligfield, P., & Gettes, L. S. (2009). AHA/ACCF/hrs recommendations for the standardization and interpretation of the electrocardiogram. Circulation, 119(10). doi:10.1161/circulationaha.108.191097
Das, M. K., Khan, B., Jacob, S., Kumar, A., & Mahenthiran, J. (2006). Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation, 113(21), 2495–2501. doi:10.1161/circulationaha.105.595892
Arunachalam, S. P., & Brown, L. F. (2009). Real-time estimation of the ECG-derived respiration (EDR) signal using a new algorithm for Baseline Wander Noise Removal. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2009.5333113
Mazzanti, B., Lamberti, C., & de Bie, J. (2003a). Validation of an ECG-derived respiration monitoring method. Computers in Cardiology, 2003. doi:10.1109/cic.2003.1291230
Kher, R. (2019). Signal Processing Techniques for Removing Noise from ECG Signals. Journal of Biomedical Engineering and Research, vol 3: 101. doi:10.17303/jber.2019.3.101
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., … SciPy 1.0 Contributors (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Shinar, Z., Baharav, A., & Akselrod, S. (n.d.). R wave duration as a measure of body position changes during sleep. Computers in Cardiology 1999. Vol.26 (Cat. No.99CH37004), 26. doi:10.1109/cic.1999.825903
Sarkar, S., Bhattacherjee, S., & Pal, S. (2015). Extraction of respiration signal from ECG for respiratory rate estimation. Michael Faraday IET International Summit 2015. doi:10.1049/cp.2015.1654
Welch, P. (1967). The use of fast fourier transform for the estimation of Power Spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. doi:10.1109/tau.1967.1161901
Noh, Y. S., Park, S. B., Hong, K. S., Yoon, Y. R., & Yoon, H. R. (n.d.). A study of significant data classification between EDR extracted and frequency analysis of heart rate variability from ECG using conductive textile. World Congress on Medical Physics and Biomedical Engineering 2006, 4100–4103. doi:10.1007/978-3-540-36841-0_1039
Lakdawala, M.M. (2008). Derivation of the respiratory rate signal from a single lead ECG.
Yang, N., Li, T., & Song, J. (2007). Construction of decision trees based entropy and rough sets under tolerance relation. Proceedings on Intelligent Systems and Knowledge Engineering (ISKE2007). doi:10.2991/iske.2007.258
RADU, M. D., COSTEA, I. M., & STAN, V. A. (2020). Automatic traffic sign recognition artificial inteligence - deep learning algorithm. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). doi:10.1109/ecai50035.2020.9223186
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
doi: https://doi.org/10.48550/arXiv.1412.6980
Bahi, M., & Batouche, M. (2018). Deep learning for ligand-based virtual screening in Drug Discovery. 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS). doi:10.1109/pais.2018.8598488
Delashmit, W. H., & Manry, M. T. (2005, May). Recent developments in multilayer perceptron neural networks. In Proceedings of the seventh Annual Memphis Area Engineering and Science Conference, MAESC.
Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78. doi:10.26438/ijcse/v6i10.7478
Published
How to Cite
Issue
Section
Copyright (c) 2023 Evelyn Fung; Shadi Ghiasi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.