Computational Elucidation of Protein-Protein Interactions in the Minimal Proteome of JCVI-syn3A
DOI:
https://doi.org/10.47611/jsrhs.v12i3.5023Keywords:
proteins, protein-protein interactions (PPIs), protein sequence, protein structure, JCVI-syn3A, mycoplasma mycoides, EVCouplings, sequence coevolution, sequence covariation, multiple sequence alignment (MSA)Abstract
Proteins play a vital role in the regulation of biological processes, facilitating the transfer of intermediates and coordinating the sequential steps of biochemical pathways. Protein-protein interactions (PPIs) are crucial molecular events in which two or more proteins bind together, enabling the formation of protein complexes that govern various cellular activities, including signal transduction, gene expression, and enzymatic reactions. Evolutionary correlations arise due to the close proximity of amino acid side chains within these interactions, where amino acids on one side of an interaction surface may restrict which amino acids fit on the other side or encourage mutations that modify the surface. In this study, our aim is to investigate the correlation between protein sequence and structure in mycoplasma mycoides JCVI-syn3A, a minimal cell consisting of 493 genes. We utilize the EVCouplings framework, a coevolution-based approach with probabilistic scores for residue interactions, to predict protein-protein interactions and the specific surfaces that govern them. Our study demonstrates that coevolution-based computational methods can predict protein-protein interactions and their interaction surfaces. After analyzing multiple sequence alignment (MSA) data across 110 protein families, we identify a total of 33 inter-protein interactions. Our analysis of the protein-protein interactions in JCVI-syn3A provides valuable insights into the genetic architecture of Mycoplasma, one of the simplest cellular life forms known, and enhances our understanding of how the earliest cellular life forms might have functioned.
Downloads
References or Bibliography
Brown, G., Yakunin, A. F., Kurilyak, I., Folz, J., Fiehn, O., Glass, J. I., Hanson, A. D., … de Crécy-Lagard, V. (2022). Metabolite Damage and Damage Control in a Minimal Genome. mBio, 13(4), e0163022. https://doi.org/10.1128/mbio.01630-22
Bianchi, D. M., Pelletier, J. F., Hutchison, C. A., 3rd, Glass, J. I., & Luthey-Schulten, Z. (2022). Toward the Complete Functional Characterization of a Minimal Bacterial Proteome. The journal of physical chemistry. B, 126(36), 6820–6834. https://doi.org/10.1021/acs.jpcb.2c04188
Breuer, M., Earnest, T. M., Merryman, C., Wise, K. S., Sun, L., Lynott, M. R., Hutchison, C. A., Smith, H. O., Lapek, J. D., Gonzalez, D. J., de Crécy-Lagard, V., Haas, D., Hanson, A. D., Labhsetwar, P., Glass, J. I., & Luthey-Schulten, Z. (2019). Essential metabolism for a minimal cell. eLife, 8, e36842. https://doi.org/10.7554/eLife.36842
Green, A. G., Elhabashy, H., Brock, K. P., Maddamsetti, R., Kohlbacher, O., & Marks, D. S. (2021). Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences. Nature communications, 12(1), 1396. https://doi.org/10.1038/s41467-021-21636-z
Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press. https://doi:10.1017/CBO9780511790492
Pelletier, J. F., Sun, L., Wise, K. S., Assad-Garcia, N., Karas, B. J., Deerinck, T. J., Ellisman, M. H., Mershin, A., Gershenfeld, N., Chuang, R. Y., Glass, J. I., & Strychalski, E. A. (2021). Genetic requirements for cell division in a genomically minimal cell. Cell, 184(9), 2430–2440.e16. https://doi.org/10.1016/j.cell.2021.03.008
Hutchison, C. A., 3rd, Chuang, R. Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., Pelletier, J. F., Qi, Z. Q., Richter, R. A., Strychalski, E. A., Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K. S., Smith, H. O., Glass, J. I., … Venter, J. C. (2016). Design and synthesis of a minimal bacterial genome. Science (New York, N.Y.), 351(6280), aad6253. https://doi.org/10.1126/science.aad6253
Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C., Zecchina, R., Onuchic, J. N., Hwa, T., & Weigt, M. (2011). Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proceedings of the National Academy of Sciences of the United States of America, 108(49), E1293–E1301. https://doi.org/10.1073/pnas.1111471108
Pfam: The protein families database in 2021 https://pubmed.ncbi.nlm.nih.gov/33125078/
A new generation of homology search tools based on probabilistic inference (HMMER) https://pubmed.ncbi.nlm.nih.gov/20180275/
Jumper, J. M., Evans, R., Pritzel, A., Green, T. J., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. a. A., Ballard, A. J., Cowie, A. M., Romera-Paredes, B., Nikolov, S., Jain, R. D., Adler, J., . . . Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
Perona, J. J. (2013). Glutaminyl-tRNA Synthetases. Madame Curie Bioscience Database - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK6506/
Ekeberg, M., Hartonen, T., & Aurell, E. (2014). Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. Journal of Computational Physics, 276, 341–356. https://doi.org/10.1016/j.jcp.2014.07.024
Published
How to Cite
Issue
Section
Copyright (c) 2023 Arnav Meduri, Abhinav Meduri; Keith Robison
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.