Determining Conditions for the Fenton Reaction through Spectroscopy of FeSCN2+ and Methyl Orange
DOI:
https://doi.org/10.47611/jsrhs.v12i3.5003Keywords:
Chemistry, Analytical, Spectroscopy, Degradation, Radicals, FentonAbstract
Exposure to radiation can lead to the breakdown of water into reactive oxygen species (ROS), such as hydroxyl radicals (OH·), through a process called radiolysis. The presence of hydroxyl radicals (OH·) and other ROS can cause mutations to DNA in the human body. While hydrogen peroxide (H₂O₂), a product of radiolysis, may not be a strong ROS on its own, it can react with certain metal ions such as iron(II) to produce hydroxyl radicals in a process called the Fenton reaction. This study investigates the optimal conditions for the Fenton reaction using a cost-effective spectroscopic analysis of ferric thiocyanate and degradation of methyl orange to detect the presence of Fe3+ and OH·. Understanding conditions and methods of detection for the Fenton reaction is relevant due to the carcinogenic nature of the hydroxyl radicals produced (Kumar et al., 2021). The results of the spectroscopic analysis suggest that the Fenton reaction occurs ideally in acidic environments (p = 0.00354) with low temperature dependence. Additionally, both spectroscopic methods are effective for detecting the efficiency of Fenton processes. This study provides valuable insights for future research on the Fenton reaction and its potential applications.
Downloads
References or Bibliography
Kumar, P., Pottiboyina, S., & Sevilla, M. (2011). Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study. Journal of Physical Chemistry A, 115(49), 13065-13072. doi:10.1021/jp208841q
Giwa, A. R. A., Bello, I. A., Olabintan, A. B., Bello, O. S., & Saleh, T. A. (2020). Kinetic and thermodynamic studies of fenton oxidative decolorization of methylene blue. Heliyon, 6(8), e04454. doi:10.1016/j.heliyon.2020.e04454
Xu, M., Wu, C., & Zhou, Y. (2020). Advancements in the Fenton process for wastewater treatment. IntechOpen. doi:10.5772/intechopen.90256
Cerchiaro, G., Bolin, C., & Cardozo-Pelaez, F. (n.d.). Hydroxyl radical oxidation of guanosine 5′-triphosphate (GTP): requirement for a GTP-Cu(II) complex. Redox Biology, 14, 101506. doi:10.1016/j.redox.2019.101506
Chiorcea-Paquim, A. M. (2022). 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC–ECD Determination. Molecules, 27(5), 1620. doi:10.3390/molecules27051620
Nakabeppu, Y. (2014). Cellular Levels of 8-Oxoguanine in either DNA or the Nucleotide Pool Play Pivotal Roles in Carcinogenesis and Survival of Cancer Cells. International Journal of Molecular Sciences, 15(7), 12543. doi:10.3390/ijms150712543
Janik, B., Bartels, L., & Jonah, C. (2007). Hydroxyl radical self-recombination reaction and absorption spectrum in water up to 350 degrees C. Journal of Physical Chemistry A, 111(18), 5073-5079. doi:10.1021/jp065992v
Yahia, L., & Yahia, C. (2007). Competition of Fe3+ UV-Vis Absorption between Ascorbic Acid (AA) and Clofibric Acid (CA). Electronic Journal of Biology, 3(3), 229-234. doi:10.1080/17479070701642223
Hua, Y., Wang, Y., Kang, X., Xu, F., Han, Z., Zhang, C., Wang, Z. Y., Liu, J. Q., Zhao, X., Chen, X., & Zang, S. Q. (2021). A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. Journal of Nanobiotechnology, 19(1), 119. doi:10.1186/s12951-021-01191-x
Zhao, X., Sun, X., Huang, W., Chen, R., Chen, K., Nie, L., & Fang, C. (2022). A microenvironment-responsive FePt probes for imaging-guided Fenton-enhanced radiotherapy of hepatocellular carcinoma. Journal of Nanobiotechnology, 20(1), 130. doi:10.1186/s12951-022-01305-z
Jia, C., Guo, Y., & Wu, F. (2021). Chemodynamic Therapy via Fenton and Fenton‐Like Nanomaterials: Strategies and Recent Advances. Small, 18(6), 2103868. doi:10.1002/smll.202103868
Rees, G. (1983). The Stability of Potassium Permanganate Solutions. Journal of Chemical Education, 60(1), 60. doi:10.1021/ed060p60
Janik, B., Bartels, L., & Jonah, C. (2007, March 15). Hydroxyl radical self-recombination reaction and absorption spectrum in water up to 350 degrees C. Journal of Physical Chemistry A, 111(18), 5073-5079. doi:10.1021/jp065992v
Yahia, L., & Yahia, C. (2007, November 16). Competition of Fe3+ UV-Vis Absorption between Ascorbic Acid (AA) and Clofibric Acid (CA). Electronic Journal of Biology, 3(3), 229-234. doi:10.1080/17479070701642223
Effect of Fenton-like reactions on the degradation of thiocyanate in water treatment. (2014, August 13). Journal of Environmental Chemical Engineering, 2(4), 1746-1754. doi:10.1016/j.jece.2014.08.010
Barron, M. (2016, July 13). 4.4: UV-Visible Spectroscopy. Chemistry LibreTexts. Retrieved March 28, 2023, from https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/04%3A_Chemical_Speciation/4.04%3A_UV-Visible_Spectroscopy
Satoh, T., Trosko, J. E., & Masten, S. J. (2007, March 15). Methylene Blue Dye Test for Rapid Qualitative Detection of Hydroxyl Radicals Formed in a Fenton’s Reaction Aqueous Solution. Environmental Science & Technology, 41(7), 2878-2883. doi:10.1021/es0617800
Song, G., Zhou, M., Du, X., Su, P., & Guo, J. (2021, June 2). Mechanistic Insight into the Heterogeneous Electro-Fenton/Sulfite Process for Ultraefficient Degradation of Pollutants over a Wide pH Range. ACS ES&T Water, 1(7), 1637-1647. doi:10.1021/acsestwater.1c00123
Rao, C. V., Giri, A. S., Goud, V. V., & Golder, A. K. (2015, November 7). Studies on pH-dependent color variation and decomposition mechanism of Brilliant Green dye in Fenton reaction. International Journal of Industrial Chemistry, 7(1), 71-80. doi:10.1007/s40090-015-0060-x
Tengrui, L., Al-Harbawi, A., Jun, Z., & Bo, L. M. (n.d.). The Effect and its Influence Factors of the Fenton Process on the Old Landfill Leachate. Science Alert. Retrieved March 28, 2023, from https://scialert.net/fulltext/?doi=jas.2007.724.727
Below, F. E., & Connick, R. E. (1958, June 20). Kinetics of the Formation of the ferric thiocyanate Complex. Journal of the American Chemical Society, 80(12), 2961-2966. doi:10.1021/ja01276a042
Walling, S. A., Um, W., Corkhill, C. L., & Hyatt, N. C. (2021, September 24). Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes. npj Materials Degradation, 5(1), 10. doi:10.1038/s41529-021-00192-3
Smith, R. D., Pimblott, S. J., & LaVerne, J. A. (2021, June 9). Hydroxyl radical yields in the heavy ion radiolysis of water. Radiation Physics and Chemistry, 170, 109629. doi:10.1016/j.radphyschem.2021.109629
Hirakawa, K. (2017, December 20). Biomolecules Oxidation by Hydrogen Peroxide and Singlet Oxygen. IntechOpen. doi:10.5772/intechopen.71465
Privett, G. J., Teixeira, M. L., & Morales, F. J. (2017, April 4). Exploring water radiolysis in proton cancer therapy: Time-dependent, non-adiabatic simulations of H+ + (H2O)1-6. PLOS ONE, 12(4), e0174456. doi:10.1371/journal.pone.0174456
Lousada, J., & Alonso, M. (2018, September 27). Fenton oxidation: A powerful tool for environmental remediation. Environmental Science & Pollution Research, 25(28), 22711-22727. doi:10.1007/s11356-018-1930-9
Mahmmud, M. U. (n.d.). Standardization of Potassium Permanganate (KMnO4) solution with standard Sodium Oxalate solution.docx. Retrieved from https://www.academia.edu/38424688/Standardization_of_Potassium_Permanganate_KMnO4_solution_with_standard_Sodium_Oxalate_solution.docx
Pędziwiatr, P., Mikołajczyk, F., Zawadzki, D., Mikołajczyk, K., & Bedka, A. (2018). Decomposition of hydrogen peroxide—kinetics and review of chosen catalysts. Acta Innovations, 26(1), 45-52. Retrieved from https://www.proakademia.eu/gfx/baza_wiedzy/461/nr_26_45-52_2_2.pdf
Butt, A. L., Mpinga, J. K., & Tichapondwa, S. M. (2021). Photo-Fenton oxidation of methyl orange dye using South African ilmenite sands as a catalyst. Catalysts, 11(12), 1452. doi:10.3390/catal11121452
De Laat, J., & Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environmental Science & Technology, 33(16), 2726-2732. doi:10.1021/es981171v
Ayoub, M. (2022). Fenton process for the treatment of wastewater effluent from the edible oil industry. Water Science & Technology, 85(12), 2905-2912. doi:10.2166/wst.2022.2
Published
How to Cite
Issue
Section
Copyright (c) 2023 Nirbaan Maken; Karel
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.