CRISPR Based Gene Editing Technologies in Cancer Research and Detection via miRNA
DOI:
https://doi.org/10.47611/jsrhs.v12i3.5001Keywords:
CRISPR/Cas9, CRISPR/Cas12, CRISPR/Cas13, Cancer, miRNAAbstract
The CRISPR system of genetic editing has been a breakthrough in all fields of science and medicine, including that of cancer research, therapy, and diagnosis. In the last two years, research has narrowed down on CRISPRs ability to serve as a tool to detect oncogenes in patients to diagnose cancer in a quick and efficient manner. CRISPR and the three key enzymes (cas9, cas12, and cas13) are a revolutionary tool for medicine and cancer trials. MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression and gene functions, both crucial to cell functions. However, aberrant miRNA is expressed in all tumor proliferation diseases, including cancer. Studies have shown CRISPRs ability to detect cancerous levels of oncogenic MicroRNAs in human samples through a variety of methods such as CRISPR-Cas9/RNAi, CRISPR/Cas12 and RCA coupling, CRISPR/Cas13 exosome coupling, and Cas13a-Cas12a amplification. All of these methods provide extremely quick high sensitivity and high specificity detection of oncogenic miRNA in samples with concentrations below 1 fM. This paper is a synthesis of the current research on the methods mentioned above to aid in the further research of CRISPR/Cas systems in cancer diagnosis and cancer therapeutics.
Downloads
References or Bibliography
Anderson, M. W., Reynolds, S. H., You, M., & Maronpot, R. M. (1992). Role of proto-oncogene activation in carcinogenesis. Environmental Health Perspectives, 98, 13–24. https://ehp.niehs.nih.gov/doi/10.1289/ehp.929813
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140
Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource: targets and expression. Nucleic Acids Research, 36(Database issue), D149-153. https://doi.org/10.1093/nar/gkm995
Brun-Usan, M., Thies, C., & Watson, R. A. (2020). How to fit in: The learning principles of cell differentiation. PLOS Computational Biology, 16(4), e1006811. https://doi.org/10.1371/journal.pcbi.1006811
Chen, S., Sanjana, N., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D., Song, J., Pan, J., Weissleder, R., Lee, H., Zhang, F., & Sharp, P. (2015, March 15). Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell. https://www.cell.com/cell/fulltext/S0092-8674(15)00204-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867415002044%3Fshowall%3Dtrue
Chial, H. (2008). Proto-oncogenes to Oncogenes to Cancer | Learn Science at Scitable. Www.nature.com. https://www.nature.com/scitable/topicpage/Proto-Oncongenes-to-Oncogenes-to-Cancer-883/
GlobalData Healthcare & GlobalData Healthcare. (2022, January 27). Over $1bn raised in venture capital funding for gene editing in 2021. Pharmaceutical Technology. https://www.pharmaceutical-technology.com/comment/venture-capital-gene-editing-funding/
Gostimskaya, I. (2022). CRISPR–Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry (Moscow), 87(8), 777–788. https://doi.org/10.1134/s0006297922080090
Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. Journal of Bacteriology, 200(7), e00580-17. https://doi.org/10.1128/JB.00580-17
Israels, E. D., & Israels, L. G. (2000). The Cell Cycle. The Oncologist, 5(6), 510–513. https://doi.org/10.1634/theoncologist.5-6-510
Jolany vangah, S., Katalani, C., Booneh, H. A., Hajizade, A., Sijercic, A., & Ahmadian, G. (2020). CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases. Biological Procedures Online, 22(1). https://doi.org/10.1186/s12575-020-00135-3
Kato, S., Han, S.-Y., Liu, W., Otsuka, K., Shibata, H., Kanamaru, R., & Ishioka, C. (2003). Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proceedings of the National Academy of Sciences, 100(14), 8424–8429. https://doi.org/10.1073/pnas.1431692100
Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E., & Dow, L. E. (2022). CRISPR in cancer biology and therapy. Nature Reviews Cancer, 22. https://doi.org/10.1038/s41568-022-00441-w
Kontomanolis, E. N., Koutras, A., Syllaios, A., Schizas, D., Mastoraki, A., Garmpis, N., Diakosavvas, M., Angelou, K., Tsatsaris, G., Pagkalos, A., Ntounis, T., & Fasoulakis, Z. (2020). Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Research, 40(11), 6009–6015. https://doi.org/10.21873/anticanres.14622
Lee, E. Y. H. P., & Muller, W. J. (2010). Oncogenes and Tumor Suppressor Genes. Cold Spring Harbor Perspectives in Biology, 2(10), a003236–a003236. https://doi.org/10.1101/cshperspect.a003236
Li, X.-Y., Du, Y.-C., Zhang, Y.-P., & Kong, D.-M. (2017). Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06594-1
Morris, S. (n.d.). Knockout. Genome.gov. https://www.genome.gov/genetics-glossary/Knockout#:~:text=A%20knockout%2C%20as%20related%20to
Niu, C., Liu, J., Xing, X., & Zhang, C. (2023). Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA. Biodesign Research, 5. https://doi.org/10.34133/bdr.0010
NIH Awards $89 Million for Additional Projects. (2022, March 22). National Center for Advancing Translational Sciences. https://ncats.nih.gov/news/releases/2019/somatic-cells
Pancholi, N. J. (2020, October 22). What is CRISPR-Cas9 and How is it Used in Cancer Research? American Association for Cancer Research (AACR). https://www.aacr.org/blog/2020/10/22/what-is-crispr-cas9-and-how-is-it-used-in-cancer-research/
Schafer, K. A. (1998). The Cell Cycle: A Review. Veterinary Pathology, 35(6), 461–478. https://doi.org/10.1177/030098589803500601
Shalem, O., Sanjana, N., Hartenian, E., Shi, X., Scott, D., Mikkelsen, T., Heckl, D., Ebert, B., Root, D., Doench, J., & Zhang, F. (2013). LentiCRISPRv2 and lentiGuide-Puro: lentiviral CRISPR/Cas9 and single guide RNA. Science, 343(6166). https://doi.org/10.1126/science.1247005
Wu, J. (2011). Regulating cell differentiation at different layers. Journal of Molecular Cell Biology, 3(6), 319–319. https://doi.org/10.1093/jmcb/mjr036
Xu, D., Cai, Y., Tang, L., Han, X., Gao, F., Cao, H., Qi, F., & Kapranov, P. (2020). A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58104-5
Xu, W., Peng, J., Guo, C., Chai, Y., Zhou, H., Wang, J., & Li, X. (2023). Rapid and ultra-sensitive early detection of cervical cancer using CRISPR/Cas12-based assay based on methylated SEPT9. Sensors and Actuators B: Chemical, 379, 133231. https://doi.org/10.1016/j.snb.2022.133231
Yan, H., Wen, Y., Tian, Z., Hart, N., Han, S., Hughes, S. J., & Zeng, Y. (2023). A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nature Biomedical Engineering, 1–19. https://doi.org/10.1038/s41551-023-01033-1
Ye, Q., Raese, R., Luo, D., Cao, S., Wan, Y.-W., Qian, Y., & Guo, N. L. (2023). MicroRNA, mRNA, and Proteomics Biomarkers and Therapeutic Targets for Improving Lung Cancer Treatment Outcomes. Cancers, 15(8), 2294. https://doi.org/10.3390/cancers15082294
Zhang, H., Qin, C., An, C., Zheng, X., Wen, S., Chen, W., Liu, X., Lv, Z., Yang, P., Xu, W., Gao, W., & Wu, Y. (2021). Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 20(1), 126. https://doi.org/10.1186/s12943-021-01431-6
Zhang, J., Guan, M., Ma, C., Liu, Y., Lv, M., Zhang, Z., Gao, H., & Zhang, K. (2023). Highly Effective Detection of Exosomal miRNAs in Plasma Using Liposome-Mediated Transfection CRISPR/Cas13a. ACS Sensors. https://doi.org/10.1021/acssensors.2c01683
Zhao, D., Tang, J., Tan, Q., Xie, X., Zhao, X., & Xing, D. (2023). CRISPR/Cas13a-triggered Cas12a biosensing method for ultrasensitive and specific miRNA detection. Talanta, 260, 124582. https://doi.org/10.1016/j.talanta.2023.124582
Published
How to Cite
Issue
Section
Copyright (c) 2023 Edier Carod-Diaz; Laura Prince
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.