Roscovitine’s Effect on D. melanogaster with TDP-43 Nuclear Loss Amyotrophic Lateral Sclerosis
DOI:
https://doi.org/10.47611/jsrhs.v12i3.4965Keywords:
ALS, Amyotrophic lateral sclerosis, Lou Gehrig's Disease, fruit flies, Drosophila melanogaster, Drosophila, TDP-43, TDP-43 Nuclear Loss, Roscovitine, treatmentAbstract
Amyotrophic lateral sclerosis (ALS) is a neurological disease that leads to motor neuron death, causing muscle atrophy and paralysis. The majority of ALS patients die from respiratory failure within 2–5 years. By 2040, the incidence of ALS is predicted to increase worldwide by 70%. ALS has no cure. TDP-43 protein dysfunction is present in ~97% of ALS patients. Past ALS research focused on TDP-43 aggregation in the cytoplasm of neuronal cells; however, loss of TDP-43 from the nucleus is now considered the main contributor to neurodegeneration. Drosophila larvae with dTDP-43 nuclear loss exhibit locomotion deficits and reduced levels of cacophony, a neuronal calcium channel required for neurotransmitter release. When cacophony was restored in dTDP-43 nuclear loss larvae, locomotion was rescued. Roscovitine is a drug that increases calcium influx in neuronal calcium channels, essentially performing the same function as increased cacophony. The purpose and novelty of this research are to determine if a roscovitine supplement can improve the locomotion of a TDP-43 nuclear loss ALS model of Drosophila melanogaster. The larval locomotion assay was used to validate the ALS symptom of muscle weakness. The movements of larvae on an agar plate were recorded. Using ImageJ, the displacements and speeds of the larvae were determined. Results indicate that ALS larvae fed roscovitine performed significantly better on the locomotion assay than ALS larvae fed normal food (p-value < 0.0001). This research provides insight into the role of neuronal calcium channels in TDP-43 nuclear loss and calcium channel agonists’ potential in treating ALS.
Downloads
References or Bibliography
Brooks, D. S., Vishal, K., Kawakami, J., Bouyain, S., & Geisbrecht, E. R. (2016). Optimization of wrMTrck to monitor Drosophila larval locomotor activity. Journal of Insect Physiology, 93–94, 11–17. https://doi.org/10.1016/j.jinsphys.2016.07.007
Brotman, R. G., Moreno-Escobar, M. C., Joseph, J., & Pawar, G. (2022). Amyotrophic lateral sclerosis. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK556151/
Chang, J.-C., Hazelett, D. J., Stewart, J. A., & Morton, D. B. (2014). Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a Drosophila, TDP-43 loss of function model of ALS. Brain Research, 1584, 39–51. https://doi.org/10.1016/j.brainres.2013.11.019
Foran, E., & Trotti, D. (2009). Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxidants & Redox Signaling, 11(7), 1587–1602. https://doi.org/10.1089/ars.2009.2444
Gitcho, M. A., Baloh, R. H., Chakraverty, S., Mayo, K., Norton, J. B., Levitch, D., Hatanpaa, K. J., White, C. L., Bigio, E. H., Caselli, R., Baker, M., Al-Lozi, M. T., Morris, J. C., Pestronk, A., Rademakers, R., Goate, A. M., & Cairns, N. J. (2008). TDP-43 A315T mutation in familial motor neuron disease. Annals of Neurology, 63(4), 535–538. https://doi.org/10.1002/ana.21344
Layalle, S., They, L., Ourghani, S., Raoul, C., & Soustelle, L. (2021). Amyotrophic lateral sclerosis genes in drosophila melanogaster. International Journal of Molecular Sciences, 22(2), 904. https://doi.org/10.3390/ijms22020904
Liu, E. Y., Russ, J., Cali, C. P., Phan, J. M., Amlie-Wolf, A., & Lee, E. B. (2019). Loss of nuclear tdp-43 is associated with decondensation of line retrotransposons. Cell Reports, 27(5), 1409-1421.e6. https://doi.org/10.1016/j.celrep.2019.04.003
Liu, R., Yang, G., Nonaka, T., Arai, T., Jia, W., & Cynader, M. S. (2013). Reducing TDP-43 aggregation does not prevent its cytotoxicity. Acta Neuropathologica Communications, 1(1), 49. https://doi.org/10.1186/2051-5960-1-49
Miller, R. G., & Appel, S. H. (2017). Introduction to supplement: The current status of treatment for ALS. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 18(sup1), 1–4. https://doi.org/10.1080/21678421.2017.1361447
Nichols, C. D., Becnel, J., & Pandey, U. B. (2012). Methods to assay drosophila behavior. Journal of Visualized Experiments : JoVE, 61, 3795. https://doi.org/10.3791/3795
Osterwalder, T., Yoon, K. S., White, B. H., & Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proceedings of the National Academy of Sciences, 98(22), 12596–12601. https://doi.org/10.1073/pnas.221303298
Südhof, T. C. (2012). Calcium control of neurotransmitter release. Cold Spring Harbor Perspectives in Biology, 4(1), a011353. https://doi.org/10.1101/cshperspect.a011353
Suk, T. R., & Rousseaux, M. W. C. (2020). The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 15(1), 45. https://doi.org/10.1186/s13024-020-00397-1
Tank, E. M., Figueroa-Romero, C., Hinder, L. M., Bedi, K., Archbold, H. C., Li, X., Weskamp, K., Safren, N., Paez-Colasante, X., Pacut, C., Thumma, S., Paulsen, M. T., Guo, K., Hur, J., Ljungman, M., Feldman, E. L., & Barmada, S. J. (2018). Abnormal RNA stability in amyotrophic lateral sclerosis. Nature Communications, 9(1), 2845. https://doi.org/10.1038/s41467-018-05049-z
Tarr, T. B., Malick, W., Liang, M., Valdomir, G., Frasso, M., Lacomis, D., Reddel, S. W., Garcia-Ocano, A., Wipf, P., & Meriney, S. D. (2013). Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(25), 10559–10567. https://doi.org/10.1523/JNEUROSCI.4629-12.2013
Wijesekera, L. C., & Nigel Leigh, P. (2009). Amyotrophic lateral sclerosis. Orphanet Journal of Rare Diseases, 4(1), 3. https://doi.org/10.1186/1750-1172-4-3
Yan, Z., Chi, P., A. Bibb, J., A. Ryan, T., & Greengard, P. (2002). Roscovitine: A novel regulator of P/Q‐type calcium channels and transmitter release in central neurons. The Journal of Physiology, 540(3), 761–770. https://doi.org/10.1113/jphysiol.2001.013376
Published
How to Cite
Issue
Section
Copyright (c) 2023 Mira Ramachandran, Satvika Aruva; Jessica Eliason
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.