Roscovitine’s Effect on D. melanogaster with TDP-43 Nuclear Loss Amyotrophic Lateral Sclerosis

Authors

  • Mira Ramachandran Academies of Loudoun
  • Satvika Aruva Academies of Loudoun
  • Jessica Eliason Academies of Loudoun

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4965

Keywords:

ALS, Amyotrophic lateral sclerosis, Lou Gehrig's Disease, fruit flies, Drosophila melanogaster, Drosophila, TDP-43, TDP-43 Nuclear Loss, Roscovitine, treatment

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurological disease that leads to motor neuron death, causing muscle atrophy and paralysis. The majority of ALS patients die from respiratory failure within 2–5 years. By 2040, the incidence of ALS is predicted to increase worldwide by 70%. ALS has no cure. TDP-43 protein dysfunction is present in ~97% of ALS patients. Past ALS research focused on TDP-43 aggregation in the cytoplasm of neuronal cells; however, loss of TDP-43 from the nucleus is now considered the main contributor to neurodegeneration. Drosophila larvae with dTDP-43 nuclear loss exhibit locomotion deficits and reduced levels of cacophony, a neuronal calcium channel required for neurotransmitter release. When cacophony was restored in dTDP-43 nuclear loss larvae, locomotion was rescued. Roscovitine is a drug that increases calcium influx in neuronal calcium channels, essentially performing the same function as increased cacophony. The purpose and novelty of this research are to determine if a roscovitine supplement can improve the locomotion of a TDP-43 nuclear loss ALS model of Drosophila melanogaster. The larval locomotion assay was used to validate the ALS symptom of muscle weakness. The movements of larvae on an agar plate were recorded. Using ImageJ, the displacements and speeds of the larvae were determined. Results indicate that ALS larvae fed roscovitine performed significantly better on the locomotion assay than ALS larvae fed normal food (p-value < 0.0001). This research provides insight into the role of neuronal calcium channels in TDP-43 nuclear loss and calcium channel agonists’ potential in treating ALS.

Downloads

Download data is not yet available.

References or Bibliography

Brooks, D. S., Vishal, K., Kawakami, J., Bouyain, S., & Geisbrecht, E. R. (2016). Optimization of wrMTrck to monitor Drosophila larval locomotor activity. Journal of Insect Physiology, 93–94, 11–17. https://doi.org/10.1016/j.jinsphys.2016.07.007

Brotman, R. G., Moreno-Escobar, M. C., Joseph, J., & Pawar, G. (2022). Amyotrophic lateral sclerosis. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK556151/

Chang, J.-C., Hazelett, D. J., Stewart, J. A., & Morton, D. B. (2014). Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a Drosophila, TDP-43 loss of function model of ALS. Brain Research, 1584, 39–51. https://doi.org/10.1016/j.brainres.2013.11.019

Foran, E., & Trotti, D. (2009). Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxidants & Redox Signaling, 11(7), 1587–1602. https://doi.org/10.1089/ars.2009.2444

Gitcho, M. A., Baloh, R. H., Chakraverty, S., Mayo, K., Norton, J. B., Levitch, D., Hatanpaa, K. J., White, C. L., Bigio, E. H., Caselli, R., Baker, M., Al-Lozi, M. T., Morris, J. C., Pestronk, A., Rademakers, R., Goate, A. M., & Cairns, N. J. (2008). TDP-43 A315T mutation in familial motor neuron disease. Annals of Neurology, 63(4), 535–538. https://doi.org/10.1002/ana.21344

Layalle, S., They, L., Ourghani, S., Raoul, C., & Soustelle, L. (2021). Amyotrophic lateral sclerosis genes in drosophila melanogaster. International Journal of Molecular Sciences, 22(2), 904. https://doi.org/10.3390/ijms22020904

Liu, E. Y., Russ, J., Cali, C. P., Phan, J. M., Amlie-Wolf, A., & Lee, E. B. (2019). Loss of nuclear tdp-43 is associated with decondensation of line retrotransposons. Cell Reports, 27(5), 1409-1421.e6. https://doi.org/10.1016/j.celrep.2019.04.003

Liu, R., Yang, G., Nonaka, T., Arai, T., Jia, W., & Cynader, M. S. (2013). Reducing TDP-43 aggregation does not prevent its cytotoxicity. Acta Neuropathologica Communications, 1(1), 49. https://doi.org/10.1186/2051-5960-1-49

Miller, R. G., & Appel, S. H. (2017). Introduction to supplement: The current status of treatment for ALS. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 18(sup1), 1–4. https://doi.org/10.1080/21678421.2017.1361447

Nichols, C. D., Becnel, J., & Pandey, U. B. (2012). Methods to assay drosophila behavior. Journal of Visualized Experiments : JoVE, 61, 3795. https://doi.org/10.3791/3795

Osterwalder, T., Yoon, K. S., White, B. H., & Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proceedings of the National Academy of Sciences, 98(22), 12596–12601. https://doi.org/10.1073/pnas.221303298

Südhof, T. C. (2012). Calcium control of neurotransmitter release. Cold Spring Harbor Perspectives in Biology, 4(1), a011353. https://doi.org/10.1101/cshperspect.a011353

Suk, T. R., & Rousseaux, M. W. C. (2020). The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 15(1), 45. https://doi.org/10.1186/s13024-020-00397-1

Tank, E. M., Figueroa-Romero, C., Hinder, L. M., Bedi, K., Archbold, H. C., Li, X., Weskamp, K., Safren, N., Paez-Colasante, X., Pacut, C., Thumma, S., Paulsen, M. T., Guo, K., Hur, J., Ljungman, M., Feldman, E. L., & Barmada, S. J. (2018). Abnormal RNA stability in amyotrophic lateral sclerosis. Nature Communications, 9(1), 2845. https://doi.org/10.1038/s41467-018-05049-z

Tarr, T. B., Malick, W., Liang, M., Valdomir, G., Frasso, M., Lacomis, D., Reddel, S. W., Garcia-Ocano, A., Wipf, P., & Meriney, S. D. (2013). Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(25), 10559–10567. https://doi.org/10.1523/JNEUROSCI.4629-12.2013

Wijesekera, L. C., & Nigel Leigh, P. (2009). Amyotrophic lateral sclerosis. Orphanet Journal of Rare Diseases, 4(1), 3. https://doi.org/10.1186/1750-1172-4-3

Yan, Z., Chi, P., A. Bibb, J., A. Ryan, T., & Greengard, P. (2002). Roscovitine: A novel regulator of P/Q‐type calcium channels and transmitter release in central neurons. The Journal of Physiology, 540(3), 761–770. https://doi.org/10.1113/jphysiol.2001.013376

Published

08-31-2023

How to Cite

Ramachandran, M., Aruva, S., & Eliason, J. . (2023). Roscovitine’s Effect on D. melanogaster with TDP-43 Nuclear Loss Amyotrophic Lateral Sclerosis . Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4965

Issue

Section

HS Research Articles