Developing and Testing Deep Learning Models for Monkeypox and Herpes Zoster Rash Differentiation
DOI:
https://doi.org/10.47611/jsrhs.v12i3.4964Keywords:
machine learning, monkeypox, herpes zoster, shingles, deep learning, artificial neural networks, convolutional neural networks, transfer learning, image analysisAbstract
Monkeypox (mpox) is a viral infection known for its pimple-like skin rashes found across the body. Since the 2022 outbreak, monkeypox has been mistaken for similar conditions, such as herpes zoster (shingles). In the past, deep learning, a form of machine learning in which software models learn to form conclusions using artificial neural networks (ANNs) similar to that of the human brain, have been utilized to identify various dermatological conditions. Utilizing the engineering method, the following research question was inquired: How can deep learning be applied to a mobile application to distinguish monkeypox viral lesions from herpes zoster viral lesions? ResNet50 and MobileNetV3, two deep-learning models, were trained utilizing transfer learning for the task of differentiating between monkeypox and shingles. ResNet50 and MobileNetV3 were then tested utilizing a separate testing set of images. Both models achieved an accuracy of 93.10 percent, with ResNet50 achieving a loss of 17.03 percent and MobileNetV3 achieving a loss of 29.30 percent. It was concluded that ResNet50 may be more precise due to its lower loss percentage, indicating fewer instances of errors. An end-user prototype of a mobile application was created to simulate these deep-learning models. These findings suggest that deep learning is an efficient and precise solution to prevent the misdiagnosis of monkeypox, potentially hindering the rising cases of this virus while aiding in proactive measures to identify and treat monkeypox victims.
Downloads
References or Bibliography
Ali, S. N., Ahmed, M., Paul, J., Jahan, T., Sani, S. M., Noor, N., & Hasan, T. (2022). Monkeypox skin lesion detection using deep learning models: A feasibility study. https://doi.org/10.48550/arXiv.2207.03342
Ayana, G., Dese, K., & Choe, S. W. (2021). Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging. Cancers, 13(4), 738. https://doi.org/10.3390/cancers13040738
Back, S., Lee, S., Shin, S., Yu, Y., Yuk, T., Jong, S., Ryu, S., & Lee, K. (2021). Robust Skin Disease Classification by Distilling Deep Neural Network Ensemble for the Mobile Diagnosis of Herpes Zoster. IEEE Access, 9, 20156–20169. https://doi.org/10.1109/access.2021.3054403
Bryer, J., Freeman, E. E., & Rosenbach, M. (2022). Monkeypox emerges on a global scale: A historical review and dermatologic primer. Journal of the American Academy of Dermatology, 87(5), 1069–1074. https://doi.org/10.1016/j.jaad.2022.07.007
Chuchu, N., Takwoingi, Y., Dinnes, J., Matin, R. N., Bassett, O., Moreau, J. F., Bayliss, S. E., Davenport, C., Godfrey, K., O'Connell, S., Jain, A., Walter, F. M., Deeks, J. J., Williams, H. C., & Cochrane Skin Cancer Diagnostic Test Accuracy Group (2018). Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. The Cochrane database of systematic reviews, 12(12), CD013192. https://doi.org/10.1002/14651858.CD013192
Dahiya, N., & Kakkar, A. K. (2016). Mobile health: Applications in tackling the Ebola challenge. Journal of family medicine and primary care, 5(1), 192–193. https://doi.org/10.4103/2249-4863.184667
Ennab, F., Babar, M. S., Khan, A. R., Mittal, R. J., Nawaz, F. A., Essar, M. Y., & Fazel, S. S. (2022). Implications of social media misinformation on COVID-19 vaccine confidence among pregnant women in Africa. Clinical epidemiology and global health, 14, 100981. https://doi.org/10.1016/j.cegh.2022.100981
Haggenmüller, S., Krieghoff-Henning, E., Jutzi, T., Trapp, N., Kiehl, L., Utikal, J. S., Fabian, S., & Brinker, T. J. (2021). Digital Natives' Preferences on Mobile Artificial Intelligence Apps for Skin Cancer Diagnostics: Survey Study. JMIR mHealth and uHealth, 9(8), e22909. https://doi.org/10.2196/22909
Hussain, A., Kaler, J., Lau, G., & Maxwell, T. (2022). Clinical Conundrums: Differentiating Monkeypox From Similarly Presenting Infections. Cureus, 14(10), e29929. https://doi.org/10.7759/cureus.29929
Huynh, Q. T., Nguyen, P. H., Le, H. X., Ngo, L. T., Trinh, N. T., Tran, M. T., Nguyen, H. T., Vu, N. T., Nguyen, A. T., Suda, K., Tsuji, K., Ishii, T., Ngo, T. X., & Ngo, H. T. (2022). Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence. Diagnostics (Basel, Switzerland), 12(8), 1879. https://doi.org/10.3390/diagnostics12081879
Islam, T., Hussain, M. A., Chowdhury, F. H., & Islam, B. M. R. (2022). A Web-scraped Skin Image Database of Monkeypox, Chickenpox, Smallpox, Cowpox, and Measles. BioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2022.08.01.502199
Ker, J., Wang, L., Rao, J., & Lim, T. (2018). Deep Learning Applications in Medical Image Analysis. IEEE Journals & Magazine | IEEE Xplore. doi: 10.1109/ACCESS.2017.2788044.
Kernebeck, S., Busse, T. S., Böttcher, M. D., Weitz, J., Ehlers, J., & Bork, U. (2020). Impact of mobile health and medical applications on clinical practice in gastroenterology. World journal of gastroenterology, 26(29), 4182–4197. https://doi.org/10.3748/wjg.v26.i29.4182
Lasser, R. (n.d.). Engineering method. Electrical and Computer Engineering Design Handbook. Retrieved November 18, 2022, from https://sites.tufts.edu/eeseniordesignhandbook/2013/engineering-method/#:~:text=The%20engineering%20method%20
Lee, G., Lee, Y., Chong, Y. P., Jang, S., Kim, M. N., Kim, J. H., Kim, W. S., & Lee, J. H. (2016). Blood Culture Testing via a Mobile App That Uses a Mobile Phone Camera: A Feasibility Study. Journal of medical Internet research, 18(10), e282. https://doi.org/10.2196/jmir.6398
Meijering, E. (2020, August 7). A bird’s-eye view of deep learning in bioimage analysis. Computational and Structural Biotechnology Journal; Elsevier BV. https://doi.org/10.1016/j.csbj.2020.08.003
Mieras, L. F., Taal, A. T., Post, E. B., Ndeve, A. G. Z., & van Hees, C. L. M. (2018). The Development of a Mobile Application to Support Peripheral Health Workers to Diagnose and Treat People with Skin Diseases in Resource-Poor Settings. Tropical medicine and infectious disease, 3(3), 102. https://doi.org/10.3390/tropicalmed3030102
Mpox in the U.S. (2023, February 24). Centers for Disease Control and Prevention. https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html
Nair, P., & Patel, B. (2022, September 5). Herpes Zoster. National Library of Medicine. Retrieved February 10, 3, from https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/07/28/monkeypox-straining-already-overstretched-public-health-system
Ollove, M. (2022, July 28). Monkeypox. Pew Trusts. Retrieved February 10, 3, from https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2022/07/28/monkeypox-straining-already-overstretched-public-health-system
Ortiz-Martínez, Y., Sarmiento, J., Bonilla-Aldana, D. K., & Rodríguez-Morales, A. J. (2022). Monkeypox goes viral: measuring the misinformation outbreak on Twitter. Journal of infection in developing countries, 16(7), 1218–1220. https://doi.org/10.3855/jidc.16907
Ouellette, S., & Rao, B. K. (2022). Usefulness of Smartphones in Dermatology: A US-Based Review. International journal of environmental research and public health, 19(6), 3553. https://doi.org/10.3390/ijerph19063553
Owen, J. E., Kuhn, E., Jaworski, B. K., McGee-Vincent, P., Juhasz, K., Hoffman, J. E., & Rosen, C. (2018). VA mobile apps for PTSD and related problems: public health resources for veterans and those who care for them. mHealth, 4, 28. https://doi.org/10.21037/mhealth.2018.05.07
Park, J. S., Jeong, S., Kim, J. M., Lee, B. H., Kim, J. M., & Lee, D. H. (2019). Development of an acute pancreatitis porcine model based on endoscopic retrograde infusion of contrast medium or sodium taurocholate. The Korean journal of internal medicine, 34(6), 1244–1251. https://doi.org/10.3904/kjim.2017.367
Raposo, A., Marques, L., Correia, R., Melo, F., Valente, J., Pereira, T., Rosário, L. B., Froes, F., Sanches, J., & Silva, H. P. da. (2021). e-CoVig: A Novel mHealth System for Remote Monitoring of Symptoms in COVID-19. Sensors, 21(10), 3397. https://doi.org/10.3390/s21103397
Sahin, V.H., Oztel, I. & Yolcu Oztel, G. Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application. J Med Syst 46, 79 (2022). https://doi.org/10.1007/s10916-022-01863-7
Sharma, S., Kumari, B., Ali, A., Yadav, R. K., Sharma, A. K., Sharma, K. K., Hajela, K., & Singh, G. K. (2022). Mobile technology: A tool for healthcare and a boon in pandemic. Journal of family medicine and primary care, 11(1), 37–43. https://doi.org/10.4103/jfmpc.jfmpc_1114_21
Shingles (Herpes Zoster) | CDC. (n.d.). https://www.cdc.gov/shingles/index.html
Soucheray, S. (2022, June 10). CDC director: Monkeypox may be tricky to diagnose. University of Minnesota. Retrieved February 10, 3, from https://www.cidrap.umn.edu/cdc-director-monkeypox-may-be-tricky-diagnose
Splitting into train, dev and test sets. (n.d.). https://cs230.stanford.edu/blog/split/
Uwishema, O., Adekunbi, O., Peñamante, C. A., Bekele, B. K., Khoury, C., Mhanna, M., Nicholas, A., Adanur, I., Dost, B., & Onyeaka, H. (2022). The burden of monkeypox virus amidst the Covid-19 pandemic in Africa: A double battle for Africa. Annals of medicine and surgery (2012), 80, 104197. https://doi.org/10.1016/j.amsu.2022.104197
World Health Organization (2022, May 19). Monkeypox. Retrieved February 10, 3, from https://www.who.int/news-room/fact-sheets/detail/monkeypox
Yawn, B. P., & Gilden, D. (2013). The global epidemiology of herpes zoster. Neurology, 81(10), 928–930. https://doi.org/10.1212/WNL.0b013e3182a3516e
Published
How to Cite
Issue
Section
Copyright (c) 2023 Chloe Callaway
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.