Chemical Underpinnings of Alzheimer’s Disease Symptoms and Causative Factors: A Systematic Review

Authors

  • Christopher Kim Hunter College High School
  • Mrinalni Sharma Hunter College High School

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4896

Keywords:

alzheimer's, brain, neurovascular regulation, oxidative stress

Abstract

The brain depends on a complex network of chemical interactions to maintain its homeostasis and functionality. Accordingly, the pathology of neurodegenerative diseases, such as Alzheimer’s disease (AD), has been shown to disrupt the chemical mechanisms that support the brain to carry out its degenerative effect. However, the nature of these disruptions remain elusive. AD is biologically defined by the deposition of Amyloid-Beta (Aβ) plaques and tau neurofibrillary tangles, and has been shown to be strongly correlated with the expression of the Apolipoprotein E4 (ApoE4) allele. Recent findings in the field of neurochemistry indicate the chemical underpinnings of hallmark signs of AD. This review will discuss the process of pathogenesis of AD, from the formation to the causal effects of AD markers, through a chemical lens. The fibrillization of Aβ isoforms as well as the fluent molecular mixing of tau isoforms and hyperphosphorylation of tau observed in mouse lines are discussed as precursor processes to Aβ plaques and tau neurofibrillary tangles. Furthermore, the pathology of Aβ plaques through redox chemistry in the brain, tau neurofibrillary tangles through microtubule disassembly, and ApoE4 through reactive oxygen species (ROS) formation are also presented. Current therapeutic approaches targeted towards specific facets of AD, such as Aducanumab, have found moderate success in treatment, and this progress indicates neurochemical pathways as a potential target for future therapeutic procedures to counteract the degenerative effects of AD.

Downloads

Download data is not yet available.

Author Biography

Mrinalni Sharma, Hunter College High School

Chemistry and Biochemistry, Faculty Member

References or Bibliography

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer's & dementia : the journal of the Alzheimer's Association, 9(1), 63–75.e2. https://doi.org/10.1016/j.jalz.2012.11.007

Park, L., Uekawa, K., Garcia-Bonilla, L., Koizumi, K., Murphy, M., Pistik, R., Younkin, L., Younkin, S., Zhou, P., Carlson, G., Anrather, J., & Iadecola, C. (2017). Brain Perivascular Macrophages Initiate the Neurovascular Dysfunction of Alzheimer Aβ Peptides. Circulation research, 121(3), 258–269. https://doi.org/10.1161/CIRCRESAHA.117.311054

Hsieh, H. J., Liu, C. A., Huang, B., Tseng, A. H., & Wang, D. L. (2014). Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. Journal of biomedical science, 21(1), 3. https://doi.org/10.1186/1423-0127-21-3

Franchini, A. M., Hunt, D., Melendez, J. A., & Drake, J. R. (2013). FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. The Journal of biological chemistry, 288(35), 25098–25108. https://doi.org/10.1074/jbc.M113.474106

Villasana, L. E., Weber, S., Akinyeke, T., & Raber, J. (2016). Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. Journal of neurochemistry, 138(6), 896–908. https://doi.org/10.1111/jnc.13737

Strickland, M. R., & Holtzman, D. M. (2019). Dr. Jekyll and Mr. Hyde: ApoE explains opposing effects of neuronal LRP1. The Journal of clinical investigation, 129(3), 969–971. https://doi.org/10.1172/JCI127578

Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M. (2011). The role of tau in Alzheimer's disease and related disorders. CNS neuroscience & therapeutics, 17(5), 514–524. https://doi.org/10.1111/j.1755-5949.2010.00177.x

Gong, C. X., & Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Current medicinal chemistry, 15(23), 2321–2328. https://doi.org/10.2174/092986708785909111

Park, L., Hochrainer, K., Hattori, Y., Ahn, S. J., Anfray, A., Wang, G., Uekawa, K., Seo, J., Palfini, V., Blanco, I., Acosta, D., Eliezer, D., Zhou, P., Anrather, J., & Iadecola, C. (2020). Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nature neuroscience, 23(9), 1079–1089. https://doi.org/10.1038/s41593-020-0686-7

Dregni, A. J., Duan, P., Xu, H., Changolkar, L., El Mammeri, N., Lee, V. M., & Hong, M. (2022). Fluent molecular mixing of Tau isoforms in Alzheimer's disease neurofibrillary tangles. Nature communications, 13(1), 2967. https://doi.org/10.1038/s41467-022-30585-0

Gu, L., & Guo, Z. (2013). Alzheimer's Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. Journal of neurochemistry, 126(3), 305–311. https://doi.org/10.1111/jnc.12202

Kumar-Singh, S., Theuns, J., Van Broeck, B., Pirici, D., Vennekens, K., Corsmit, E., Cruts, M., Dermaut, B., Wang, R., & Van Broeckhoven, C. (2006). Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Human mutation, 27(7), 686–695. https://doi.org/10.1002/humu.20336

Kuperstein, I., Broersen, K., Benilova, I., Rozenski, J., Jonckheere, W., Debulpaep, M., Vandersteen, A., Segers-Nolten, I., Van Der Werf, K., Subramaniam, V., Braeken, D., Callewaert, G., Bartic, C., D'Hooge, R., Martins, I. C., Rousseau, F., Schymkowitz, J., & De Strooper, B. (2010). Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. The EMBO journal, 29(19), 3408–3420. https://doi.org/10.1038/emboj.2010.211

Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., Dickson, D. W., Golde, T., & McGowan, E. (2007). Abeta40 inhibits amyloid deposition in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(3), 627–633. https://doi.org/10.1523/JNEUROSCI.4849-06.2007

Hamley I. W. (2012). The amyloid beta peptide: a chemist's perspective. Role in Alzheimer's and fibrillization. Chemical reviews, 112(10), 5147–5192. https://doi.org/10.1021/cr3000994

Numata, K., & Kaplan, D. L. (2010). Mechanisms of enzymatic degradation of amyloid Beta microfibrils generating nanofilaments and nanospheres related to cytotoxicity. Biochemistry, 49(15), 3254–3260. https://doi.org/10.1021/bi902134p

Smith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochimica et biophysica acta, 1768(8), 1976–1990. https://doi.org/10.1016/j.bbamem.2007.02.002

Williams, T. I., Lynn, B. C., Markesbery, W. R., & Lovell, M. A. (2006). Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer's disease. Neurobiology of aging, 27(8), 1094–1099. https://doi.org/10.1016/j.neurobiolaging.2005.06.004

Pamplona, R., Dalfó, E., Ayala, V., Bellmunt, M. J., Prat, J., Ferrer, I., & Portero-Otín, M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. The Journal of biological chemistry, 280(22), 21522–21530. https://doi.org/10.1074/jbc.M502255200

Dalleau, S., Baradat, M., Guéraud, F., & Huc, L. (2013). Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell death and differentiation, 20(12), 1615–1630. https://doi.org/10.1038/cdd.2013.138

England, K., O'Driscoll, C., & Cotter, T. G. (2004). Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell death and differentiation, 11(3), 252–260. https://doi.org/10.1038/sj.cdd.4401338

Khan, A., Dobson, J. P., & Exley, C. (2006). Redox cycling of iron by Abeta42. Free radical biology & medicine, 40(4), 557–569. https://doi.org/10.1016/j.freeradbiomed.2005.09.013

Peters, D. G., Connor, J. R., & Meadowcroft, M. D. (2015). The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin. Neurobiology of disease, 81, 49–65. https://doi.org/10.1016/j.nbd.2015.08.007

van Bergen, J. M., Li, X., Hua, J., Schreiner, S. J., Steininger, S. C., Quevenco, F. C., Wyss, M., Gietl, A. F., Treyer, V., Leh, S. E., Buck, F., Nitsch, R. M., Pruessmann, K. P., van Zijl, P. C., Hock, C., & Unschuld, P. G. (2016). Colocalization of cerebral iron with Amyloid beta in Mild Cognitive Impairment. Scientific reports, 6, 35514. https://doi.org/10.1038/srep35514

Schipper H. M. (2004). Heme oxygenase expression in human central nervous system disorders. Free radical biology & medicine, 37(12), 1995–2011. https://doi.org/10.1016/j.freeradbiomed.2004.09.015

Rezaei-Ghaleh, N., Giller, K., Becker, S., & Zweckstetter, M. (2011). Effect of zinc binding on β-amyloid structure and dynamics: implications for Aβ aggregation. Biophysical journal, 101(5), 1202–1211. https://doi.org/10.1016/j.bpj.2011.06.062

Rivers-Auty, J., Tapia, V. S., White, C. S., Daniels, M. J. D., Drinkall, S., Kennedy, P. T., Spence, H. G., Yu, S., Green, J. P., Hoyle, C., Cook, J., Bradley, A., Mather, A. E., Peters, R., Tzeng, T. C., Gordon, M. J., Beattie, J. H., Brough, D., & Lawrence, C. B. (2021). Zinc Status Alters Alzheimer's Disease Progression through NLRP3-Dependent Inflammation. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(13), 3025–3038. https://doi.org/10.1523/JNEUROSCI.1980-20.2020

Cuajungco, M. P., Goldstein, L. E., Nunomura, A., Smith, M. A., Lim, J. T., Atwood, C. S., Huang, X., Farrag, Y. W., Perry, G., & Bush, A. I. (2000). Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. The Journal of biological chemistry, 275(26), 19439–19442. https://doi.org/10.1074/jbc.C000165200

van Vliet P. (2012). Cholesterol and late-life cognitive decline. Journal of Alzheimer's disease : JAD, 30 Suppl 2, S147–S162. https://doi.org/10.3233/JAD-2011-111028

Blanchard, J. W., Akay, L. A., Davila-Velderrain, J., von Maydell, D., Mathys, H., Davidson, S. M., Effenberger, A., Chen, C. Y., Maner-Smith, K., Hajjar, I., Ortlund, E. A., Bula, M., Agbas, E., Ng, A., Jiang, X., Kahn, M., Blanco-Duque, C., Lavoie, N., Liu, L., Reyes, R., … Tsai, L. H. (2022). APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature, 611(7937), 769–779. https://doi.org/10.1038/s41586-022-05439-w

Lanfranco, M. F., Ng, C. A., & Rebeck, G. W. (2020). ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease. International journal of molecular sciences, 21(17), 6336. https://doi.org/10.3390/ijms21176336

Kadurin, I., Rothwell, S. W., Lana, B., Nieto-Rostro, M., & Dolphin, A. C. (2017). LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α2δ-1 subunit. Scientific reports, 7, 43802. https://doi.org/10.1038/srep43802

Panday, A., Sahoo, M. K., Osorio, D., & Batra, S. (2015). NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cellular & molecular immunology, 12(1), 5–23. https://doi.org/10.1038/cmi.2014.89

Mazanetz, M. P., & Fischer, P. M. (2007). Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature reviews. Drug discovery, 6(6), 464–479. https://doi.org/10.1038/nrd2111

Chaaban, S., & Brouhard, G. J. (2017). A microtubule bestiary: structural diversity in tubulin polymers. Molecular biology of the cell, 28(22), 2924–2931. https://doi.org/10.1091/mbc.E16-05-0271

Kar, S., Fan, J., Smith, M. J., Goedert, M., & Amos, L. A. (2003). Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. The EMBO journal, 22(1), 70–77. https://doi.org/10.1093/emboj/cdg001

Tang, M., Harrison, J., Deaton, C. A., & Johnson, G. V. W. (2019). Tau Clearance Mechanisms. Advances in experimental medicine and biology, 1184, 57–68. https://doi.org/10.1007/978-981-32-9358-8_5

Shelton, S. B., & Johnson, G. V. (2004). Cyclin-dependent kinase-5 in neurodegeneration. Journal of neurochemistry, 88(6), 1313–1326. https://doi.org/10.1111/j.1471-4159.2003.02328.x

Spittaels, K., Van den Haute, C., Van Dorpe, J., Geerts, H., Mercken, M., Bruynseels, K., Lasrado, R., Vandezande, K., Laenen, I., Boon, T., Van Lint, J., Vandenheede, J., Moechars, D., Loos, R., & Van Leuven, F. (2000). Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. The Journal of biological chemistry, 275(52), 41340–41349. https://doi.org/10.1074/jbc.M006219200

Perry, G., Roder, H., Nunomura, A., Takeda, A., Friedlich, A. L., Zhu, X., Raina, A. K., Holbrook, N., Siedlak, S. L., Harris, P. L., & Smith, M. A. (1999). Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport, 10(11), 2411–2415. https://doi.org/10.1097/00001756-199908020-00035

Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., & Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron, 3(4), 519–526. https://doi.org/10.1016/0896-6273(89)90210-9

Chung, D. C., Roemer, S., Petrucelli, L., & Dickson, D. W. (2021). Cellular and pathological heterogeneity of primary tauopathies. Molecular neurodegeneration, 16(1), 57. https://doi.org/10.1186/s13024-021-00476-x

Fitzpatrick, A. W. P., Falcon, B., He, S., Murzin, A. G., Murshudov, G., Garringer, H. J., Crowther, R. A., Ghetti, B., Goedert, M., & Scheres, S. H. W. (2017). Cryo-EM structures of tau filaments from Alzheimer's disease. Nature, 547(7662), 185–190. https://doi.org/10.1038/nature23002

Published

08-31-2023

How to Cite

Kim, C., & Sharma, M. (2023). Chemical Underpinnings of Alzheimer’s Disease Symptoms and Causative Factors: A Systematic Review. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4896

Issue

Section

HS Review Articles