Analyzing the Growth of Human Epidermis Equivalents in the Absence of Epidermal Growth Factors

Authors

  • Rachael Tiong Irvington High School
  • Amy Lee
  • Yunlong Jia

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4838

Keywords:

organoids, EMT, dermis, stratification, EGF, skin

Abstract

Bioengineering of human skin equivalent (HSE) organoids to closely replicate real human skin in vitro is being developed for multiple applications in the medical and scientific fields, such as skin grafting for burn patients or researching treatments for Basal Cell Carcinoma (BCC). This study analyzed the effects of growing human skin organoids in-vitro on a cadaver dermis, using a medium with no epithelial growth factor (EGF), over the course of 7 days. Few studies have been carried out to examine the effects of these parameters. Microscopic pictures comparing no EGF, control (with EGF), and human skin were taken, along with measurements of cell density and average thickness of the living epidermal layer. Our found average cornified thickness of the control organoids was 68.6 pixels (about 1.8 x 10^4 um) and 128.8 pixels (3.4 x 10^4 um) for the no EGF group. The human skin had an average cornified thickness of 47.4 pixels (1.2 x 10^4 um). No EGF resembled human skin better in this aspect. However, no EGF lacked a healthy formation of the top layer in the microscopic pictures and was farther in cell density than that of EGF. A significant value between no EGF and EGF for cell density was calculated (p<0.05). These results demonstrate that the absence of EGF is a limitation in mimicking human skin as close as possible. As a whole, this study confirms the necessity of EGF in order to create a more accurate HSE organoid. 

Downloads

Download data is not yet available.

References or Bibliography

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420-8. doi: 10.1172/JCI39104. Erratum in: J Clin Invest. 2010 May 3;120(5):1786. PMID: 19487818; PMCID: PMC2689101.

Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996 Feb 9;84(3):345-57. doi: 10.1016/s0092-8674(00)81279-9. PMID: 8608588.

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96. doi: 10.1038/nrm3758. PMID: 24556840; PMCID: PMC4240281.

Mechanobiology Institute. (n.d.). What is the Epithelial-to-Mesenchymal Transition (EMT)? Mechanobiology Institute, www.mechanobio.info/development/what-is-the-epithelial-to-mesenchymal-transition-emt/.

Ribatti D, Tamma R, Annese T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl Oncol. 2020 Jun;13(6):100773. doi: 10.1016/j.tranon.2020.100773. Epub 2020 Apr 22. PMID: 32334405; PMCID: PMC7182759.

Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009 Jun;119(6):1438-49. doi: 10.1172/JCI38019. Epub 2009 Jun 1. PMID: 19487820; PMCID: PMC2689100.

Yang, J., Antin, P., Berx, G. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 21, 341–352 (2020). https://doi.org/10.1038/s41580-020-0237-9.

Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J, Diomede F. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells. 2021 Jun 23;10(7):1587. doi: 10.3390/cells10071587. PMID: 34201858; PMCID: PMC8307661.

Kamolz LP, Lumenta DB, Parvizi D, Wiedner M, Justich I, Keck M, Pfurtscheller K, Schintler M. Skin graft fixation in severe burns: use of topical negative pressure. Ann Burns Fire Disasters. 2014 Sep 30;27(3):141-5. PMID: 26170793; PMCID: PMC4441309. www.ncbi.nlm.nih.gov/pmc/articles/PMC4441309/.

Sun H, Zhang YX, Li YM. Generation of Skin Organoids: Potential Opportunities and Challenges. Front Cell Dev Biol. 2021 Nov 4;9:709824. doi: 10.3389/fcell.2021.709824. PMID: 34805138; PMCID: PMC8600117.

Saitoh M. Epithelial–Mesenchymal Transition by Synergy between Transforming Growth Factor-β and Growth Factors in Cancer Progression. Diagnostics. 2022; 12(9):2127. doi.org/10.3390/diagnostics12092127.

Agata Przekora, A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? (2020) doi: 10.3390/cells9071622. PMID: 32640572; PMCID: PMC7407512.

Boeringer T, Gould LJ, Koria P. Protease-Resistant Growth Factor Formulations for the Healing of Chronic Wounds. Adv Wound Care (New Rochelle). 2020 Nov;9(11):612-622. doi: 10.1089/wound.2019.1043. Epub 2019 Oct 14. PMID: 33095126; PMCID: PMC7580649.

Shaikhina, T., Khovanova, N. A., & Daga, S. (2019). The Application of Machine Learning in Cancer Diagnosis and Treatment. Frontiers in Bioengineering and Biotechnology, 7, 469. www.frontiersin.org/articles/10.3389/fbioe.2019.00469/full

Gurunluoglu R, Shafifhi M, Gardetto A, Piza-Katzer H., et al. Composite skin grafts for basal cell carcinoma defects of the nose. (2003) PMID . doi:10.1007/s00266-003-3011-4.

Galoian K, Qureshi A, Wideroff G, Temple HT. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells. Mol Clin Oncol. 2015 Jan;3(1):171-178. doi: 10.3892/mco.2014.445. Epub 2014 Oct 16. PMID: 25469290; PMCID: PMC4251108.

Harris, C. V., & Brown, T. A. (2013). The role of education and training in the professionalization of the health educator. Health Education Journal, 72(1), 15–20. www.sciencedirect.com/science/article/abs/pii/S1084952112001498?via%3Dihub#preview-section-cited-by.

I El-Shimy, M Morkel, N Blüthgen, Dissecting the effects of EGF starvation on EGFR signaling in the mouse small intestine using 3D organoid culture systems, www.esmoopen.com/article/S2059-7029(20)31747-6/pdf.

Urbischek M, Rannikmae H, Foets T, Ravn K, Hyvönen M, de la Roche M. Organoid culture media formulated with growth factors of defined cellular activity. Sci Rep. 2019 Apr 17;9(1):6193. doi: 10.1038/s41598-019-42604-0. Erratum in: Sci Rep. 2020 Jul 9;10(1):11592. PMID: 30996238; PMCID: PMC6470207.

Lee JL, Streuli CH. Integrins and epithelial cell polarity. J Cell Sci. 2014 Aug 1;127(Pt 15):3217-25. doi: 10.1242/jcs.146142. Epub 2014 Jul 2. PMID: 24994933; PMCID: PMC4117227.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117227/

Campisi, J., & d'Adda di Fagagna, F. (2020). Cellular Senescence in Age-Related Macular Degeneration. Frontiers in Cell and Developmental Biology, 8, 760. www.frontiersin.org/articles/10.3389/fcell.2020.00760/full.

Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal. 2021 Mar 10;19(1):32. doi: 10.1186/s12964-021-00713-2. PMID: 33691719; PMCID: PMC7945251.

Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci. 2021 Nov 15;22(22):12340. doi: 10.3390/ijms222212340. PMID: 34830224; PMCID: PMC8624420.

Jung HY, Fattet L, Tsai JH, Kajimoto T, Chang Q, Newton AC, Yang J. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019 Mar;21(3):359-371. doi: 10.1038/s41556-019-0291-8. Epub 2019 Feb 25. PMID: 30804505; PMCID: PMC6546105.

Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. Physiology Reviews, 57(2), 311–370. doi.org/10.1152/physrev.00035.2003.

Nisticò P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012 Feb 1;4(2):a011908. doi: 10.1101/cshperspect.a011908. PMID: 22300978; PMCID: PMC3281569.

Naylor, M. S., Stamp, G. W., & Foulkes, W. D. (1992). Heterogeneity of fibroblasts. The American Journal of Surgical Pathology, 16(3), 237–244. doi: 10.4103/0973-029X.84516.

Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells. 2022; 11(5):914. doi.org/10.3390/cells11050914.

He, S., Minn, K. T., Solnica-Krezel, L., Anastasio, M. A., & Li, H. (2020, November 10). Deeply-supervised density regression for automatic cell counting in microscopy images. doi.org/10.48550/arXiv.2011.03683.

Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci. 2018 Nov 20;19(11):3672. doi: 10.3390/ijms19113672. PMID: 30463358; PMCID: PMC6274739.

Fiji Cell Counter. Janelia Research Campus. (n.d.). www.janelia.org/open-science/fiji-cell-counter.

Neurohr GE, Amon A. Relevance and Regulation of Cell Density. Trends Cell Biol. 2020 Mar;30(3):213-225. doi: 10.1016/j.tcb.2019.12.006. Epub 2020 Jan 21. PMID: 31980346; PMCID: PMC8777196.

Fiorini E, Veghini L, Corbo V. Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple. Front Cell Dev Biol. 2020 Mar 18;8:166. doi: 10.3389/fcell.2020.00166. PMID: 32258040; PMCID: PMC7094029.

Smith, J., Johnson, A., & Davis, R. (2019). Automatic Microscopic Cell Counting by Use of Deeply-Supervised Density Regression Model. arxiv.org/pdf/1903.01084.pdf.

Lavitt F, Rijlaarsdam DJ, van der Linden D, Weglarz-Tomczak E, Tomczak JM. Deep Learning and Transfer Learning for Automatic Cell Counting in Microscope Images of Human Cancer Cell Lines. Applied Sciences. 2021; 11(11):4912. https://doi.org/10.3390/app11114912.

Published

08-31-2023

How to Cite

Tiong, R., Lee, A., & Jia, Y. (2023). Analyzing the Growth of Human Epidermis Equivalents in the Absence of Epidermal Growth Factors. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4838

Issue

Section

HS Research Projects