Treating Alzheimer’s and ATTR using CRISPR-Cas9 to target amyloidosis

Authors

  • Pranav Joshi Ridge High School
  • Nicole Guilz Columbia University
  • Michael Amendola Ridge High School

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4806

Keywords:

CRISPR, Alzheimer's, TTR, Gene therapy

Abstract

Approximately 50 million people live with Alzheimer’s (Alz) and 50,000 people are living with Transthyretin Amyloidosis (ATTR) worldwide. Both Alz and ATTR are types of amyloidosis, a disease where amyloid protein builds up in the body’s organs. Alz and ATTR are conditions with no known cures and similar etiologies but different manifestations in the brain and heart, respectively. Alzheimer’s disease is irreversible, which causes lifelong suffering for patients and their families. ATTR is a potentially fatal disease that causes heart problems for patients. Amyloidosis arises due to genetic mutations in the amyloid precursor protein (APP) or proteins involved in the generation of APP such as BACE1, PSEN1, PSEN2, APOE and transthyretin (TTR) genes, which result in the overexpression and accumulation of amyloid protein.  CRISPR-Cas9 is a breakthrough gene editing technology that is capable of editing mutations in multiple genes with high specificity. This technology has the capability of treating both Alz and ATTR through targeted gene editing of the mutations that contribute to these diseases. This review will focus on BACE1, PSEN1, PSEN2, and APOE as targets for Alz and TTR as a treatment for ATTR through the use of CRISPR-Cas9. Various delivery mechanisms and current clinical trials will be discussed to identify the best delivery route of these treatments for the respective disease . A CRISPR-Cas9 derived treatment would bring new hope for patients with these diseases and could propel cures for other types of amyloidosis.

Downloads

Download data is not yet available.

References or Bibliography

Aimo, A., Castiglione, V., Rapezzi, C., Franzini, M., Panichella, G., Vergaro, G., Gillmore, J., Fontana, M., Passino, C., & Emdin, M. (2022). RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nature Reviews Cardiology 2022 19:10, 19(10), 655–667. https://doi.org/10.1038/s41569-022-00683-z

Andrews, M., Tousi, B., & Sabbagh, M. N. (2018). 5HT6 Antagonists in the Treatment of Alzheimer’s Dementia: Current Progress. Neurology and Therapy, 7(1), 51. https://doi.org/10.1007/S40120-018-0095-Y

Arboleda-Velasquez, J. F., Lopera, F., O’Hare, M., Delgado-Tirado, S., Marino, C., Chmielewska, N., Saez-Torres, K. L., Amarnani, D., Schultz, A. P., Sperling, R. A., Leyton-Cifuentes, D., Chen, K., Baena, A., Aguillon, D., Rios-Romenets, S., Giraldo, M., Guzmán-Vélez, E., Norton, D. J., Pardilla-Delgado, E., … Quiroz, Y. T. (2019). Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nature Medicine, 25(11), 1680–1683. https://doi.org/10.1038/S41591-019-0611-3

Atri, A., Frölich, L., Ballard, C., Tariot, P. N., Molinuevo, J. L., Boneva, N., Windfeld, K., Raket, L. L., & Cummings, J. L. (2018). Effect of Idalopirdine as Adjunct to Cholinesterase Inhibitors on Change in Cognition in Patients With Alzheimer Disease: Three Randomized Clinical Trials. JAMA, 319(2), 130–142. https://doi.org/10.1001/JAMA.2017.20373

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/SCIENCE.1138140

Belloy, M. E., Napolioni, V., Han, S. S., Le Guen, Y., & Greicius, M. D. (2020). Association of Klotho-VS Heterozygosity With Risk of Alzheimer Disease in Individuals Who Carry APOE4. JAMA Neurology, 77(7), 849–862. https://doi.org/10.1001/JAMANEUROL.2020.0414

Benson, M. D., Kluve-Beckerman, B., Zeldenrust, S. R., Siesky, A. M., Bodenmiller, D. M., Showalter, A. D., & Sloop, K. W. (2006). Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle & Nerve, 33(5), 609–618. https://doi.org/10.1002/MUS.20503

Bergström, J., Gustavsson, Å., Hellman, U., Sletten, K., Murphy, C. L., Weiss, D. T., Solomon, A., Olofsson, B. O., & Westermark, P. (2005). Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. The Journal of Pathology, 206(2), 224–232. https://doi.org/10.1002/PATH.1759

Blake, C. C. F., Geisow, M. J., Swan, I. D. A., Rerat, C., & Rerat, B. (1974). Strjcture of human plasma prealbumin at 2-5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. Journal of Molecular Biology, 88(1). https://doi.org/10.1016/0022-2836(74)90291-5

Bolotin, A., Quinquis, B., Sorokin, A., & Dusko Ehrlich, S. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England), 151(Pt 8), 2551–2561. https://doi.org/10.1099/MIC.0.28048-0

Bourgault, S., Solomon, J. P., Reixach, N., & Kelly, J. W. (2011). Sulfated glycosaminoglycans accelerate transthyretin amyloidogenesis by quaternary structural conversion. Biochemistry, 50(6), 1001–1015. https://doi.org/10.1021/BI101822Y

Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science (New York, N.Y.), 321(5891), 960–964. https://doi.org/10.1126/SCIENCE.1159689

Choi, P. S., & Meyerson, M. (2014). Targeted genomic rearrangements using CRISPR/Cas technology. Nature Communications, 5. https://doi.org/10.1038/NCOMMS4728

Citron, M. (2002). Emerging Alzheimer’s disease therapies: Inhibition of β-secretase. Neurobiology of Aging, 23(6), 1017–1022. https://doi.org/10.1016/S0197-4580(02)00122-7

Coelho, T., Adams, D., Silva, A., Lozeron, P., Hawkins, P. N., Mant, T., Perez, J., Chiesa, J., Warrington, S., Tranter, E., Munisamy, M., Falzone, R., Harrop, J., Cehelsky, J., Bettencourt, B. R., Geissler, M., Butler, J. S., Sehgal, A., Meyers, R. E., … Suhr, O. B. (2013). Safety and efficacy of RNAi therapy for transthyretin amyloidosis. The New England Journal of Medicine, 369(9), 819–829. https://doi.org/10.1056/NEJMOA1208760

Colon, W., & Kelly, J. W. (1992). Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry, 31(36), 8654–8660. https://doi.org/10.1021/BI00151A036

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/SCIENCE.1231143

Cornwell, G. G., Murdoch, W. L., Kyle, R. A., Westermark, P., & Pitkänen, P. (1983). Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. The American Journal of Medicine, 75(4), 618–623. https://doi.org/10.1016/0002-9343(83)90443-6

Cummings, J., Ballard, C., Tariot, P., Owen, R., Foff, E., Youakim, J., Norton, J., & Stankovic, S. (2018). Pimavanserin: Potential Treatment For Dementia-Related Psychosis. The Journal of Prevention of Alzheimer’s Disease, 5(4), 253–258. https://doi.org/10.14283/JPAD.2018.29

De Strooper, B., & Karran, E. (2016). The Cellular Phase of Alzheimer’s Disease. Cell, 164(4), 603–615. https://doi.org/10.1016/J.CELL.2015.12.056

Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science (New York, N.Y.), 346(6213). https://doi.org/10.1126/SCIENCE.1258096

Escamilla-Ayala, A., Wouters, R., Sannerud, R., & Annaert, W. (2020). Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Seminars in Cell & Developmental Biology, 105, 12–26. https://doi.org/10.1016/J.SEMCDB.2020.02.005

Escott-Price, V., Myers, A. J., Huentelman, M., & Hardy, J. (2017). Polygenic risk score analysis of pathologically confirmed Alzheimer disease. Annals of Neurology, 82(2), 311–314. https://doi.org/10.1002/ANA.24999

Fagerberg, L., Hallstrom, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjostedt, E., Lundberg, E., Szigyarto, C. A. K., Skogs, M., Ottosson Takanen, J., Berling, H., Tegel, H., Mulder, J., … Uhlen, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics : MCP, 13(2), 397–406. https://doi.org/10.1074/MCP.M113.035600

Fang, B., Jia, L., & Jia, J. (2006). Chinese Presenilin-1 V97L mutation enhanced Abeta42 levels in SH-SY5Y neuroblastoma cells. Neuroscience Letters, 406(1–2), 33–37. https://doi.org/10.1016/J.NEULET.2006.06.072

Finn, J. D., Smith, A. R., Patel, M. C., Shaw, L., Youniss, M. R., van Heteren, J., Dirstine, T., Ciullo, C., Lescarbeau, R., Seitzer, J., Shah, R. R., Shah, A., Ling, D., Growe, J., Pink, M., Rohde, E., Wood, K. M., Salomon, W. E., Harrington, W. F., … Morrissey, D. V. (2018). A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Reports, 22(9), 2227–2235. https://doi.org/10.1016/J.CELREP.2018.02.014

Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., Ho, T. W., Kattamis, A., Kernytsky, A., Lekstrom-Himes, J., Li, A. M., Locatelli, F., Mapara, M. Y., de Montalembert, M., Rondelli, D., … Corbacioglu, S. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. The New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMOA2031054

Frisoni, G. B., Boccardi, M., Barkhof, F., Blennow, K., Cappa, S., Chiotis, K., Démonet, J. F., Garibotto, V., Giannakopoulos, P., Gietl, A., Hansson, O., Herholz, K., Jack, C. R., Nobili, F., Nordberg, A., Snyder, H. M., Ten Kate, M., Varrone, A., Albanese, E., … Winblad, B. (2017). Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. The Lancet. Neurology, 16(8), 661–676. https://doi.org/10.1016/S1474-4422(17)30159-X

Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. The American Journal of Medicine, 131(10), 1161–1169. https://doi.org/10.1016/J.AMJMED.2018.01.022

Ghosh, A. K., Kumaragurubaran, N., Hong, L., Kulkarni, S. S., Xu, X., Chang, W., Weerasena, V., Turner, R., Koelsch, G., Bilcer, G., & Tang, J. (2007). Design, synthesis, and X-ray structure of potent memapsin 2 (beta-secretase) inhibitors with isophthalamide derivatives as the P2-P3-ligands. Journal of Medicinal Chemistry, 50(10), 2399–2407. https://doi.org/10.1021/JM061338S

Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442. https://doi.org/10.1016/J.CELL.2013.06.044

Gillmore, J. D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M. L., Seitzer, J., O’Connell, D., Walsh, K. R., Wood, K., Phillips, J., Xu, Y., Amaral, A., Boyd, A. P., Cehelsky, J. E., McKee, M. D., Schiermeier, A., Harari, O., Murphy, A., … Lebwohl, D. (2021). CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. New England Journal of Medicine, 385(6), 493–502. https://doi.org/10.1056/NEJMOA2107454/SUPPL_FILE/NEJMOA2107454_DATA-SHARING.PDF

György, B., Lööv, C., Zaborowski, M. P., Takeda, S., Kleinstiver, B. P., Commins, C., Kastanenka, K., Mu, D., Volak, A., Giedraitis, V., Lannfelt, L., Maguire, C. A., Joung, J. K., Hyman, B. T., Breakefield, X. O., & Ingelsson, M. (2018). CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease. Molecular Therapy. Nucleic Acids, 11, 429. https://doi.org/10.1016/J.OMTN.2018.03.007

Habtemariam, B. A., Karsten, V., Attarwala, H., Goel, V., Melch, M., Clausen, V. A., Garg, P., Vaishnaw, A. K., Sweetser, M. T., Robbie, G. J., & Vest, J. (2021). Single-Dose Pharmacokinetics and Pharmacodynamics of Transthyretin Targeting N-acetylgalactosamine-Small Interfering Ribonucleic Acid Conjugate, Vutrisiran, in Healthy Subjects. Clinical Pharmacology and Therapeutics, 109(2), 372–382. https://doi.org/10.1002/CPT.1974

Hampel, H., Vassar, R., De Strooper, B., Hardy, J., Willem, M., Singh, N., Zhou, J., Yan, R., Vanmechelen, E., De Vos, A., Nisticò, R., Corbo, M., Imbimbo, B. Pietro, Streffer, J., Voytyuk, I., Timmers, M., Tahami Monfared, A. A., Irizarry, M., Albala, B., … Vergallo, A. (2021). The β-Secretase BACE1 in Alzheimer’s Disease. Biological Psychiatry, 89(8), 745. https://doi.org/10.1016/J.BIOPSYCH.2020.02.001

Haniu, M., Denis, P., Young, Y., Mendiaz, E. A., Fuller, J., Hui, J. O., Bennett, B. D., Kahn, S., Ross, S., Burgess, T., Katta, V., Rogers, G., Vassar, R., & Citron, M. (2000). Characterization of Alzheimer’s beta -secretase protein BACE. A pepsin family member with unusual properties. The Journal of Biological Chemistry, 275(28), 21099–21106. https://doi.org/10.1074/JBC.M002095200

Hardcastle, N., Boulis, N. M., & Federici, T. (2018). AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opinion on Biological Therapy, 18(3), 293–307. https://doi.org/10.1080/14712598.2018.1416089

Horii, T., Arai, Y., Yamazaki, M., Morita, S., Kimura, M., Itoh, M., Abe, Y., & Hatada, I. (2014). Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Scientific Reports, 4. https://doi.org/10.1038/SREP04513

Horvath, P., Romero, D. A., Coûté-Monvoisin, A. C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Fremaux, C., & Barrangou, R. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1401–1412. https://doi.org/10.1128/JB.01415-07

Hashimoto, H., Monserratt, L., Nguyen, P., Feil, D., Harwood, D., Mandelkern, M. A., & Sultzer, D. L. (2006). Anxiety and regional cortical glucose metabolism in patients with Alzheimer’s disease. The Journal of Neuropsychiatry and Clinical Neurosciences, 18(4), 521–528. https://doi.org/10.1176/JNP.2006.18.4.521

Huang, Y. W. A., Zhou, B., Wernig, M., & Südhof, T. C. (2017). ApoE2, ApoE3 and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion. Cell, 168(3), 427. https://doi.org/10.1016/J.CELL.2016.12.044

Hurshman, A. R., White, J. T., Powers, E. T., & Kelly, J. W. (2004). Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry, 43(23), 7365–7381. https://doi.org/10.1021/BI049621L

Hutton, M., & Hardy, J. (1997a). The Presenilins and Alzheimer’s Disease. Human Molecular Genetics, 6(10), 1639–1646. https://doi.org/10.1093/HMG/6.10.1639

Ihse, E., Rapezzi, C., Merlini, G., Benson, M. D., Ando, Y., Suhr, O. B., Ikeda, S. I., Lavatelli, F., Obici, L., Quarta, C. C., Leone, O., Jono, H., Ueda, M., Lorenzini, M., Liepnieks, J., Ohshima, T., Tasaki, M., Yamashita, T., & Westermark, P. (2013). Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. Amyloid : The International Journal of Experimental and Clinical Investigation : The Official Journal of the International Society of Amyloidosis, 20(3), 142–150. https://doi.org/10.3109/13506129.2013.797890

Ikeda, S. I., Makishita, H., Oguchi, K., Yanagisawa, N., & Nagata, T. (1982). Gastrointestinal amyloid deposition in familial amyloid polyneuropathy. Neurology, 32(12), 1364–1364. https://doi.org/10.1212/WNL.32.12.1364

Intellia and Regeneron Announce Initial Data from the Cardiomyopathy Arm of Ongoing Phase 1 Study of NTLA-2001, an Investigational CRISPR Therapy for the Treatment of Transthyretin (ATTR) Amyloidosis - Intellia Therapeutics. (n.d.). Retrieved February 13, 2023, from https://ir.intelliatx.com/news-releases/news-release-details/intellia-and-regeneron-announce-initial-data-cardiomyopathy-arm

Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987

Jack, C. R., Therneau, T. M., Weigand, S. D., Wiste, H. J., Knopman, D. S., Vemuri, P., Lowe, V. J., Mielke, M. M., Roberts, R. O., Machulda, M. M., Graff-Radford, J., Jones, D. T., Schwarz, C. G., Gunter, J. L., Senjem, M. L., Rocca, W. A., & Petersen, R. C. (2019). Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National Institute on Aging-Alzheimer’s Association Research Framework. JAMA Neurology, 76(10), 1174–1183. https://doi.org/10.1001/JAMANEUROL.2019.1971

Janto, K., Prichard, J. R., & Pusalavidyasagar, S. (2018). An Update on Dual Orexin Receptor Antagonists and Their Potential Role in Insomnia Therapeutics. Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 14(8), 1399–1408. https://doi.org/10.5664/JCSM.7282

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.), 337(6096), 816–821. https://doi.org/10.1126/SCIENCE.1225829

Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., … Stefansson, K. (2012). A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 488(7409), 96. https://doi.org/10.1038/NATURE11283

Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., Rai, A., Cho, M. Y., Stern, J. J., Prota, A. E., Kampmann, M., Akhmanova, A., Steinmetz, M. O., Tanenbaum, M. E., & Weissman, J. S. (2017). Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 68(1), 210-223.e6. https://doi.org/10.1016/J.MOLCEL.2017.09.012

Kang, E. L., Cameron, A. N., Piazza, F., Walker, K. R., & Tesco, G. (2010). Ubiquitin Regulates GGA3-mediated Degradation of BACE1. The Journal of Biological Chemistry, 285(31), 24108. https://doi.org/10.1074/JBC.M109.092742

Kennedy, E. M., Kornepati, A. V. R., Goldstein, M., Bogerd, H. P., Poling, B. C., Whisnant, A. W., Kastan, M. B., & Cullen, B. R. (2014). Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease. Journal of Virology, 88(20), 11965. https://doi.org/10.1128/JVI.01879-14

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M., & Amit, I. (2017). A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell, 169(7), 1276-1290.e17. https://doi.org/10.1016/J.CELL.2017.05.018

Koike, H., Misu, K., Sugiura, M., Iijima, M., Mori, K., Yamamoto, M., Hattori, N., Mukai, E., Ando, Y., Ikeda, S., & Sobue, G. (2004). Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology, 63(1), 129–138. https://doi.org/10.1212/01.WNL.0000132966.36437.12

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016a). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420. https://doi.org/10.1038/NATURE17946

Koonin, E. V., & Makarova, K. S. (2019). Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772). https://doi.org/10.1098/RSTB.2018.0087

Lai, Z., Colón, W., & Kelly, J. W. (1996). The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry, 35(20), 6470–6482. https://doi.org/10.1021/BI952501G

Lane, C. A., Hardy, J., & Schott, J. M. (2018). Alzheimer’s disease. European Journal of Neurology, 25(1), 59–70. https://doi.org/10.1111/ENE.13439

Li, L., He, Z. Y., Wei, X. W., Gao, G. P., & Wei, Y. Q. (2015). Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Human Gene Therapy, 26(7), 452–462. https://doi.org/10.1089/HUM.2015.069

Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J., & Li, J. F. (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 3(12), 930–936. https://doi.org/10.1038/S41477-017-0046-0

Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257. https://doi.org/10.1080/10717544.2018.1474964

Long, C., Amoasii, L., Mireault, A. A., McAnally, J. R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J. M., Bassel-Duby, R., & Olson, E. N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science (New York, N.Y.), 351(6271), 400–403. https://doi.org/10.1126/SCIENCE.AAD5725

Lu, L., Yu, X., Cai, Y., Sun, M., & Yang, H. (2021). Application of CRISPR/Cas9 in Alzheimer’s Disease. Frontiers in Neuroscience, 15, 1691. https://doi.org/10.3389/FNINS.2021.803894/BIBTEX

Lyketsos, C. G., Carrillo, M. C., Ryan, J. M., Khachaturian, A. S., Trzepacz, P., Amatniek, J., Cedarbaum, J., Brashear, R., & Miller, D. S. (2011). Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 7(5), 532–539. https://doi.org/10.1016/J.JALZ.2011.05.2410

Lykken, E. A., Shyng, C., Edwards, R. J., Rozenberg, A., & Gray, S. J. (2018). Recent progress and considerations for AAV gene therapies targeting the central nervous system. Journal of Neurodevelopmental Disorders 2018 10:1, 10(1), 1–10. https://doi.org/10.1186/S11689-018-9234-0

Maia, L. F., Magalhães, R., Freitas, J., Taipa, R., Pires, M. M., Osório, H., Dias, D., Pessegueiro, H., Correia, M., & Coelho, T. (2015). CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings. Journal of Neurology, Neurosurgery & Psychiatry, 86(2), 159–167. https://doi.org/10.1136/JNNP-2014-308107

Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1. https://doi.org/10.1186/1745-6150-1-7

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., Van Der Oost, J., & Koonin, E. V. (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews. Microbiology, 9(6), 467–477. https://doi.org/10.1038/NRMICRO2577

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science (New York, N.Y.), 339(6121), 823–826. https://doi.org/10.1126/SCIENCE.1232033

Mangione, P. P., Porcari, R., Gillmore, J. D., Pucci, P., Monti, M., Porcari, M., Giorgetti, S., Marchese, L., Raimondi, S., Serpell, L. C., Chen, W., Relini, A., Marcoux, J., Clatworthy, I. R., Taylor, G. W., Tennent, G. A., Robinson, C. V., Hawkins, P. N., Stoppini, M., … Bellotti, V. (2014). Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1539–1544. https://doi.org/10.1073/PNAS.1317488111/-/DCSUPPLEMENTAL/PNAS.201317488SI.PDF

Martiskainen, H., Herukka, S. K., Stančáková, A., Paananen, J., Soininen, H., Kuusisto, J., Laakso, M., & Hiltunen, M. (2017). Decreased plasma β-amyloid in the Alzheimer’s disease APP A673T variant carriers. Annals of Neurology, 82(1), 128–132. https://doi.org/10.1002/ANA.24969

Mayeda, E. R., Glymour, M. M., Quesenberry, C. P., Johnson, J. K., Pérez-Stable, E. J., & Whitmer, R. A. (2017). Survival after dementia diagnosis in five racial/ethnic groups. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 13(7), 761–769. https://doi.org/10.1016/J.JALZ.2016.12.008

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 7(3), 263–269. https://doi.org/10.1016/J.JALZ.2011.03.005

Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182. https://doi.org/10.1007/S00239-004-0046-3

Moussa-Pacha, N. M., Abdin, S. M., Omar, H. A., Alniss, H., & Al-Tel, T. H. (2020). BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Medicinal Research Reviews, 40(1), 339–384. https://doi.org/10.1002/MED.21622

Nagata, K., Takahashi, M., Matsuba, Y., Okuyama-Uchimura, F., Sato, K., Hashimoto, S., Saito, T., & Saido, T. C. (2018). Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nature Communications, 9(1). https://doi.org/10.1038/S41467-018-04238-0

Obici, L., Cortese, A., Lozza, A., Lucchetti, J., Gobbi, M., Palladini, G., Perlini, S., Saraiva, M. J., & Merlini, G. (2012). Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid : The International Journal of Experimental and Clinical Investigation : The Official Journal of the International Society of Amyloidosis, 19 Suppl 1(SUPPL. 1), 34–36. https://doi.org/10.3109/13506129.2012.678508

Ortiz-Virumbrales, M., Moreno, C. L., Kruglikov, I., Marazuela, P., Sproul, A., Jacob, S., Zimmer, M., Paull, D., Zhang, B., Schadt, E. E., Ehrlich, M. E., Tanzi, R. E., Arancio, O., Noggle, S., & Gandy, S. (2017a). CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2N141I neurons. Acta Neuropathologica Communications, 5(1). https://doi.org/10.1186/S40478-017-0475-Z

Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., Olsen, K. M., Gregg, A., Noggle, S., & Tessier-Lavigne, M. (2016). Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 533(7601), 125–129. https://doi.org/10.1038/NATURE17664

Park, H., Oh, J., Shim, G., Cho, B., Chang, Y., Kim, S., Baek, S., Kim, H., Shin, J., Choi, H., Yoo, J., Kim, J., Jun, W., Lee, M., Lengner, C. J., Oh, Y. K., & Kim, J. (2019a). In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature Neuroscience, 22(4), 524–528. https://doi.org/10.1038/S41593-019-0352-0

Park, H.-J., Ran, Y., Jung, J. I., Holmes, O., Price, A. R., Smithson, L., Ceballos-Diaz, C., Han, C., Wolfe, M. S., Daaka, Y., Ryabinin, A. E., Kim, S.-H., Hauger, R. L., Golde, T. E., & Felsenstein, K. M. (2015). The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity. The EMBO Journal, 34(12), 1674. https://doi.org/10.15252/EMBJ.201488795

Patterson, C. (n.d.). World Alzheimer Report 2018 - The state of the art of dementia research: New frontiers; World Alzheimer Report 2018 - The state of the art of dementia research: New frontiers.

Plog, B. A., & Nedergaard, M. (2018). The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annual Review of Pathology, 13, 379–394. https://doi.org/10.1146/ANNUREV-PATHOL-051217-111018

Poon, C. H., Wang, Y., Fung, M. L., Zhang, C., & Lim, L. W. (2020). Rodent Models of Amyloid-Beta Feature of Alzheimer’s Disease: Development and Potential Treatment Implications. Aging and Disease, 11(5), 1235. https://doi.org/10.14336/AD.2019.1026

Proft, J., & Weiss, N. (2012). A protective mutation against Alzheimer disease? Communicative & Integrative Biology, 5(4), 301. https://doi.org/10.4161/CIB.21799

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 152(5), 1173. https://doi.org/10.1016/J.CELL.2013.02.022

Rajan, K. B., Weuve, J., Barnes, L. L., McAninch, E. A., Wilson, R. S., & Evans, D. A. (2021). Population Estimate of People with Clinical AD and Mild Cognitive Impairment in the United States (2020–2060). Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 17(12), 1966. https://doi.org/10.1002/ALZ.12362

Rhodius-Meester, H. F. M., Tijms, B. M., Lemstra, A. W., Prins, N. D., Pijnenburg, Y. A. L., Bouwman, F., Scheltens, P., & Van Der Flier, W. M. (2019). Survival in memory clinic cohort is short, even in young-onset dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 90(6), 726–728. https://doi.org/10.1136/JNNP-2018-318820

Rhodius-Meester, H. F. M., van Maurik, I. S., Koikkalainen, J., Tolonen, A., Frederiksen, K. S., Hasselbalch, S. G., Soininen, H., Herukka, S. K., Remes, A. M., Teunissen, C. E., Barkhof, F., Pijnenburg, Y. A. L., Scheltens, P., Lötjönen, J., & van der Flier, W. M. (2020). Selection of memory clinic patients for CSF biomarker assessment can be restricted to a quarter of cases by using computerized decision support, without compromising diagnostic accuracy. PloS One, 15(1). https://doi.org/10.1371/JOURNAL.PONE.0226784

Rukmangadachar, L. A., & Bollu, P. C. (2022). Amyloid Beta Peptide. March, 3–5. https://www.ncbi.nlm.nih.gov/books/NBK459119/

S. Liu, C., Ruthirakuhan, M., A. Chau, S., Herrmann, N., F. Carvalho, A., & L. Lanctôt, K. (2016). Pharmacological Management of Agitation and Aggression in Alzheimer’s Disease: A Review of Current and Novel Treatments. Current Alzheimer Research, 13(10), 1134–1144. https://doi.org/10.2174/1567205013666160502122933

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer’s disease. Lancet (London, England), 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Schneider, J. A., Arvanitakis, Z., Leurgans, S. E., & Bennett, D. A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Annals of Neurology, 66(2), 200–208. https://doi.org/10.1002/ANA.21706

Sekijima, Y., Dendle, M. A., & Kelly, J. W. (2006). Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid : The International Journal of Experimental and Clinical Investigation : The Official Journal of the International Society of Amyloidosis, 13(4), 236–249. https://doi.org/10.1080/13506120600960882

Sekijima, Y., Uchiyama, S., Tojo, K., Sano, K., Shimizu, Y., Imaeda, T., Hoshii, Y., Kato, H., & Ikeda, S. ichi. (2011). High prevalence of wild-type transthyretin deposition in patients with idiopathic carpal tunnel syndrome: a common cause of carpal tunnel syndrome in the elderly. Human Pathology, 42(11), 1785–1791. https://doi.org/10.1016/J.HUMPATH.2011.03.004

Sekijima, Y., Wiseman, R. L., Matteson, J., Hammarström, P., Miller, S. R., Sawkar, A. R., Balch, W. E., & Kelly, J. W. (2005). The biological and chemical basis for tissue-selective amyloid disease. Cell, 121(1), 73–85. https://doi.org/10.1016/J.CELL.2005.01.018

Serneels, L., T’Syen, D., Perez-Benito, L., Theys, T., Holt, M. G., & De Strooper, B. (2020). Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer’s disease. Molecular Neurodegeneration, 15(1), 207–221. https://doi.org/10.1186/S13024-020-00399-Z

Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1(1). https://doi.org/10.1101/CSHPERSPECT.A006189

Sierksma, A., Lu, A., Mancuso, R., Fattorelli, N., Thrupp, N., Salta, E., Zoco, J., Blum, D., Buée, L., Strooper, B. De, & Fiers, M. (2020). Novel Alzheimer risk genes determine the microglia response to amyloid‐β but not to TAU pathology. EMBO Molecular Medicine, 12(3). https://doi.org/10.15252/EMMM.201910606

Simmons, Z., Blaivas, M., Aguilera, A. J., Feldman, E. L., Bromberg, M. B., & Towfighi, J. (1993). Low diagnostic yield of sural nerve biopsy in patients with peripheral neuropathy and primary amyloidosis. Journal of the Neurological Sciences, 120(1), 60–63. https://doi.org/10.1016/0022-510X(93)90025-T

Sims, R., Van Der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R., Bis, J. C., Martin, E. R., Grenier-Boley, B., Heilmann-Heimbach, S., Chouraki, V., Kuzma, A. B., Sleegers, K., Vronskaya, M., Ruiz, A., Graham, R. R., … Schellenberg, G. D. (2017). Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nature Genetics, 49(9), 1373–1384. https://doi.org/10.1038/NG.3916

Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507(7490), 62–67. https://doi.org/10.1038/NATURE13011

Su, Y., Jono, H., Torikai, M., Hosoi, A., Soejima, K., Guo, J., Tasaki, M., Misumi, Y., Ueda, M., Shinriki, S., Shono, M., Obayashi, K., Nakashima, T., Sugawara, K., & Ando, Y. (2012). Antibody therapy for familial amyloidotic polyneuropathy. Amyloid : The International Journal of Experimental and Clinical Investigation : The Official Journal of the International Society of Amyloidosis, 19 Suppl 1(SUPPL. 1), 45–46. https://doi.org/10.3109/13506129.2012.674075

Suda, T., & Liu, D. (2015). Hydrodynamic delivery. Advances in Genetics, 89, 89–111. https://doi.org/10.1016/BS.ADGEN.2014.10.002

Sultzer, D. L., Brown, C. V., Mandelkern, M. A., Mahler, M. E., Mendez, M. F., Chen, S. T., & Cummings, J. L. (2003). Delusional thoughts and regional frontal/temporal cortex metabolism in Alzheimer’s disease. The American Journal of Psychiatry, 160(2), 341–349. https://doi.org/10.1176/APPI.AJP.160.2.341

Sun, L., Zhou, R., Yang, G., & Shi, Y. (2017). Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proceedings of the National Academy of Sciences of the United States of America, 114(4), E476–E485. https://doi.org/10.1073/PNAS.1618657114/-/DCSUPPLEMENTAL

Sweeney, M. D., Montagne, A., Sagare, A. P., Nation, D. A., Schneider, L. S., Chui, H. C., Harrington, M. G., Pa, J., Law, M., Wang, D. J. J., Jacobs, R. E., Doubal, F. N., Ramirez, J., Black, S. E., Nedergaard, M., Benveniste, H., Dichgans, M., Iadecola, C., Love, S., … Zlokovic, B. V. (2019). Vascular dysfunction – the disregarded partner of Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 15(1), 158. https://doi.org/10.1016/J.JALZ.2018.07.222

Terazaki, H., Ando, Y., Fernandes, R., Yamamura, K. I., Maeda, S., & Saraiva, M. J. (2006). Immunization in familial amyloidotic polyneuropathy: Counteracting deposition by immunization with a Y78F TTR mutant. Laboratory Investigation, 86(1), 23–31. https://doi.org/10.1038/labinvest.3700365

Tojo, K., Sekijima, Y., Kelly, J. W., & Ikeda, S. ichi. (2006). Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neuroscience Research, 56(4), 441–449. https://doi.org/10.1016/J.NEURES.2006.08.014

Tröder, S. E., Ebert, L. K., Butt, L., Assenmacher, S., Schermer, B., & Zevnik, B. (2018). An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLOS ONE, 13(5), e0196891. https://doi.org/10.1371/JOURNAL.PONE.0196891

Tsuchiya, A., Yazaki, M., Kametani, F., Takei, Y. I., & Ikeda, S. I. (2008). Marked regression of abdominal fat amyloid in patients with familial amyloid polyneuropathy during long-term follow-up after liver transplantation. Liver Transplantation : Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 14(4), 563–570. https://doi.org/10.1002/LT.21395

Ueda, M., Horibata, Y., Shono, M., Misumi, Y., Oshima, T., Su, Y., Tasaki, M., Shinriki, S., Kawahara, S., Jono, H., Obayashi, K., Ogawa, H., & Ando, Y. (2011). Clinicopathological features of senile systemic amyloidosis: An ante-and post-mortem study. Modern Pathology, 24(12), 1533–1544. https://doi.org/10.1038/modpathol.2011.117

van der Lee, S. J., Wolters, F. J., Ikram, M. K., Hofman, A., Ikram, M. A., Amin, N., & van Duijn, C. M. (2018). The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: a community-based cohort study. The Lancet. Neurology, 17(5), 434–444. https://doi.org/10.1016/S1474-4422(18)30053-X

van Dyck, C. H. (2018). Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biological Psychiatry, 83(4), 311–319. https://doi.org/10.1016/J.BIOPSYCH.2017.08.010

Vaxman, I., & Gertz, M. (2020). When to Suspect a Diagnosis of Amyloidosis. Acta Haematologica, 143(4), 304–311. https://doi.org/10.1159/000506617

Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M. P., Griep, A., Gelpi, E., Beilharz, M., Riedel, D., Golenbock, D. T., Geyer, M., Walter, J., Latz, E., & Heneka, M. T. (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 552(7685), 355–361. https://doi.org/10.1038/NATURE25158

Verma, R., Sahu, R., Singh, D. D., & Egbo, T. E. (2019). A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Seminars in Cell & Developmental Biology, 96, 44–52. https://doi.org/10.1016/J.SEMCDB.2019.04.007

Wadhwani, A. R., Affaneh, A., Van Gulden, S., & Kessler, J. A. (2019c). Neuronal Apolipoprotein E4 Increases Cell Death and Phosphorylated Tau Release in Alzheimer Disease. Annals of Neurology, 85(5), 726. https://doi.org/10.1002/ANA.25455

Walter, J., Fluhrer, R., Hartung, B., Willem, M., Kaether, C., Capell, A., Lammich, S., Multhaup, G., & Haass, C. (2001). Phosphorylation regulates intracellular trafficking of beta-secretase. The Journal of Biological Chemistry, 276(18), 14634–14641. https://doi.org/10.1074/JBC.M011116200

Wechalekar, A. D., Gillmore, J. D., & Hawkins, P. N. (2016). Systemic amyloidosis. The Lancet, 387(10038), 2641–2654. https://doi.org/10.1016/S0140-6736(15)01274-X

Westermark, P., Sletten, K., Johansson, B., & Cornwell, G. G. (1990). Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2843. https://doi.org/10.1073/PNAS.87.7.2843

Willem, M., Tahirovic, S., Busche, M. A., Ovsepian, S. V., Chafai, M., Kootar, S., Hornburg, D., Evans, L. D. B., Moore, S., Daria, A., Hampel, H., Müller, V., Giudici, C., Nuscher, B., Wenninger-Weinzierl, A., Kremmer, E., Heneka, M. T., Thal, D. R., Giedraitis, V., … Haass, C. (2015). η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 526(7573), 443–447. https://doi.org/10.1038/NATURE14864

Williamson, J. D., Pajewski, N. M., Auchus, A. P., Bryan, R. N., Chelune, G., Cheung, A. K., Cleveland, M. L., Coker, L. H., Crowe, M. G., Cushman, W. C., Cutler, J. A., Davatzikos, C., Desiderio, L., Erus, G., Fine, L. J., Gaussoin, S. A., Harris, D., Hsieh, M. K., Johnson, K. C., … Wright, C. B. (2019). Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA, 321(6), 553. https://doi.org/10.1001/JAMA.2018.21442

Wong, E., Liao, G. P., Chang, J. C., Xu, P., Li, Y. M., & Greengard, P. (2019). GSAP modulates γ-secretase specificity by inducing conformational change in PS1. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6385–6390. https://doi.org/10.1073/PNAS.1820160116/-/DCSUPPLEMENTAL

Wu, Z., Yang, H., & Colosi, P. (2010). Effect of genome size on AAV vector packaging. Molecular Therapy : The Journal of the American Society of Gene Therapy, 18(1), 80–86. https://doi.org/10.1038/MT.2009.255

Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L., & Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas mediated genome engineering. Cell, 154(6), 1370. https://doi.org/10.1016/J.CELL.2013.08.022

Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C., & Sheng, M. (2016). TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron, 91(2), 328–340. https://doi.org/10.1016/J.NEURON.2016.06.015

Yuan, J., Venkatraman, S., Zheng, Y., McKeever, B. M., Dillard, L. W., & Singh, S. B. (2013). Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. Journal of Medicinal Chemistry, 56(11), 4156–4180. https://doi.org/10.1021/JM301659N

Zhao, Y., Dai, Z., Liang, Y., Yin, M., Ma, K., He, M., Ouyang, H., & Teng, C. B. (2014). Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Scientific Reports, 4. https://doi.org/10.1038/SREP03943

Zhou, H., Liu, J., Zhou, C., Gao, N., Rao, Z., Li, H., Hu, X., Li, C., Yao, X., Shen, X., Sun, Y., Wei, Y., Liu, F., Ying, W., Zhang, J., Tang, C., Zhang, X., Xu, H., Shi, L., … Yang, H. (2018). In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nature Neuroscience, 21(3), 440–446. https://doi.org/10.1038/S41593-017-0060-6

Zhu, K., Xiang, X., Filser, S., Marinković, P., Dorostkar, M. M., Crux, S., Neumann, U., Shimshek, D. R., Rammes, G., Haass, C., Lichtenthaler, S. F., Gunnersen, J. M., & Herms, J. (2018). Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6. Biological Psychiatry, 83(5), 428–437. https://doi.org/10.1016/J.BIOPSYCH.2016.12.023

Published

08-31-2023

How to Cite

Joshi, P., Guilz, N., & Amendola, M. (2023). Treating Alzheimer’s and ATTR using CRISPR-Cas9 to target amyloidosis. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4806

Issue

Section

HS Review Articles