Non-Invasive Biomarker Detection for Pregnancy Complications Using Cell-Free RNA

Authors

  • Meghana Somu Monta Vista High School

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4564

Keywords:

bioinformatics, computational biology, maternal health, cell-free RNA, epigenetics

Abstract

Pregnancy complications pose a significant threat to maternal health as they may result in a higher risk for issues during pregnancy or labor relative to the risk for these issues in a typical pregnancy. Many cases of maternal deaths and complicated pregnancies can be avoided with a richer understanding of maternal health early on in pregnancy. Genetic analysis of fetal DNA in maternal blood is becoming increasingly common1, and while genetic screening efforts have progressed substantially in recent years, they have focused on fetal health rather than the health of the mother2. This work focuses on the detection of common complications of pregnancy including preeclampsia, gestational diabetes, and chronic hypertension using non-invasive circulating cell-free RNA data. We developed interpretable supervised machine learning methods that had high performance in identifying pregnancy complications from healthy pregnancies (AUC = 0.86). Using our models, we found various relevant transcripts, related to pregnancy biology. These included S100A9, which encodes for a protein involved in inflammation and was elevated in complicated pregnancies, as well as two small RNAs involved in cell proliferation and body mass, RNY4 and RNY3, which were reduced in preeclampsia and GDM and have previous roles in pregnancy. Our findings highlight several promising non-invasive biomarkers for the early diagnosis of complications of pregnancy that have the potential to be easily integrated into existing clinical workflows.

Downloads

Download data is not yet available.

References or Bibliography

M. D. Pertile, M. Halks-Miller, N. Flowers, C. Barbacioru, S. L. Kinnings, D. Vavrek, W. K. Seltzer, D. W. Bianchi. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Science translational medicine. 9, eaan1240 (2017). https://doi.org/10.1126/scitranslmed.aan1240

M. N. Moufarrej, R. J. Wong, G. M.Shaw, D. K. Stevenson, S. R. Quake. Investigating Pregnancy and Its Complications Using Circulating Cell-Free RNA in Women's Blood During Gestation. Frontiers in pediatrics. 8, 605219 (2020). https://doi.org/10.3389/fped.2020.605219

E. Declercq, L. Zephyrin. Severe Maternal Morbidity in the United States: A Primer. Commonwealth Fund. (2021). https://www.commonwealthfund.org/publications/issue-briefs/2021/oct/severe-maternal-morbidity-united-states-primer.

Y. I. Elshimali, H. Khaddour, M. Sarkissyan, Y. Wu, J. V. Vadgama. The clinical utilization of circulating cell-free DNA (CCFDNA) in blood of cancer patients. International journal of molecular sciences. 14, 18925–18958 (2013). https://doi.org/10.3390/ijms140918925

M. Alcaide, M. Cheung, J. Hillman, S. R. Rassekh, R. J. Deyell, G. Batist, A. Karsan, A. W. Wyatt, N. Johnson, D. W. Scott, R. D. Morin. Evaluating the quantity, quality and size distribution of cell-free DNA by multiplex droplet digital PCR. Sci Rep. 10, 12564 (2020). https://doi.org/10.1038/s41598-020-69432-x

L. A. Corchete, E. A. Rojas, D. Alonso-López, J. D. L. Rivas, N. C. Gutiérrez, F. J. Burguillo. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci Rep. 10, 19737 (2020). https://doi.org/10.1038/s41598-020-76881-x

“Scara3 Scavenger Receptor Class A Member 3 [Homo Sapiens (Human)] - Gene - NCBI.” National Center for Biotechnology Information, U.S. National Library of Medicine, 29 Mar. 2023, https://www.ncbi.nlm.nih.gov/gene/51435.

“Malsu1 Mitochondrial Assembly of Ribosomal Large Subunit 1 [Homo Sapiens (Human)] - Gene - NCBI.” National Center for Biotechnology Information, U.S. National Library of Medicine, 29 Mar. 2023, https://www.ncbi.nlm.nih.gov/gene/115416.

A. K. Knight, A. L. Dunlop, V. Kilaru, D. Cobb, E. J. Corwin, K. N. Conneely, A.K. Smith. Characterization of gene expression changes over healthy term pregnancies. PloS one. 13, e0204228 (2018). https://doi.org/10.1371/journal.pone.0204228

H. Mi, X. Huang, A. Muruganujan, H. Tang, C. Mills, D. Kang, P. D. Thomas. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419-D426 (2019). https://doi.org/10.1093/nar/gky1038

C. Zhao, E. Lu, X. Hu, H. Cheng, J. Zhang, X. Zhu. S100A9 regulates cisplatin chemosensitivity of squamous cervical cancer cells and related mechanism. Cancer Management and Research. 10, 3753-3764 (2018). DOI: 10.2147/CMAR.S168276

R.R. Nair, A. Khanna, K. Singh. Role of inflammatory proteins S100A8 and S100A9 in pathophysiology of recurrent early pregnancy loss. Placenta. 34, 824-827 (2013). https://doi.org/10.1016/j.placenta.2013.06.307.

C. Gebhardt, J. Németh, P. Angel, J. Hess. S100A8 and S100A9 in inflammation and cancer. Biochemical pharmacology. 72, 1622–1631 (2006). https://doi.org/10.1016/j.bcp.2006.05.017

V. Alur, V. Raju, B. Vastrad, A. Tengli, C. Vastrad, S. Kotturshetti. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Bioscience reports. 41, BSR20210617 (2021). https://doi.org/10.1042/BSR20210617

C. Couture, M. Brien, I. Boufaied, C. Duval, D. D. Soglio, E. A. L. Enninga, B. Cox, S. Girard. Proinflammatory changes in the maternal circulation, maternal–fetal interface, and placental transcriptome in preterm birth. American Journal of Obstetrics and Gynecology. 228, 332.e1-332.e17 (2023). https://doi.org/10.1016/j.ajog.2022.08.035

Z. Chen, J. Gan, M. Zhang, Y. Du, H. Zhao. Ferroptosis and Its Emerging Role in Pre-Eclampsia. Antioxidants (Basel, Switzerland). 11, 1282 (2022).. https://doi.org/10.3390/antiox11071282

A. Kulyté, A. Aman, R. J. Strawbridge, P. Arner, I. A. Dahlman. Genome-Wide Association Study Identifies Genetic Loci Associated With Fat Cell Number and Overlap With Genetic Risk Loci for Type 2 Diabetes. Diabetes. 71, 1350–1362 (2022). https://doi.org/10.2337/db21-0804

M.N. Moufarrej, S.K. Vorperian, R.J. Wong, A. A. Campos, C. C. Quaintance, R. V. Sit, M. Tan, A. M. Detweiler, H. Mekonen, N. F. Neff, C. Baruch-Gravett, J. A. Litch, M. L. Druzin, V. D. Winn, G. M. Shaw, D. K. Stevenson, S. R. Quake. Early prediction of preeclampsia in pregnancy with cell-free RNA. Nature. 602, 689–694 (2022). https://doi.org/10.1038/s41586-022-04410-z

A. Ahmed, M. Liang, L. Chi, Y. Q. Zhou, J. G. Sled, M. D. Wilson, P. Delgado-Olguín. Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility. Molecular metabolism. 43, 101116 (2021). https://doi.org/10.1016/j.molmet.2020.101116

V. Alur, V. Raju, B. Vastrad, C. Vastrad, S. Kotturshetti. Analysis of key genes and pathways associated with the pathogenesis of Type 2 diabetes mellitus. bioRxiv. 12, 456106 (2021). https://doi.org/10.1101/2021.08.12.456106

Y. Huang, Z. Li, E. Lin, H. Pei, R. Gaizhen. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Experimental & Molecular Medicine. 53, 1792–1806 (2021). https://doi.org/10.1038/s12276-021-00700-0

D. A. Enquobahrie, M. A. Williams, C. Qiu, D. S. Siscovick, T. K. Sorensen. Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians. 24, 1002–1012 (2011). https://doi.org/10.3109/14767058.2010.538454

Z. Masoumi, G. E. Maes, K. Herten, Á. Cortés-Calabuig, A. G. Alattar, E. Hanson, L. Erlandsson, E. Mezey, M. Magnusson, J. R. Vermeesch, M. Familari, S. R. Hansson. Preeclampsia is Associated with Sex-Specific Transcriptional and Proteomic Changes in Fetal Erythroid Cells. International journal of molecular sciences. 20, 2038 (2019). https://doi.org/10.3390/ijms20082038

T. Lekva, R. Lyle, M. C. P. Roland, C. Friis, D. W. Bianchi, I. Z. Jaffe, E. R. Norwitz, J. Bollerslev, T. Henriksen, T. Ueland. Gene expression in term placentas is regulated more by spinal or epidural anesthesia than by late-onset preeclampsia or gestational diabetes mellitus. Sci Rep. 6, 29715 (2016). https://doi.org/10.1038/srep29715

S. Wei, D. Wang, H. Li, L. Bi, J. Deng, G. Zhu, J. Zhang, C. Li, Min Li, Y. Fang, G. Zhang, J. Chen, S. Tao, X. Zhang. Fatty acylCoA synthetase FadD13 regulates proinflammatory cytokine secretion dependent on the NF-κB signalling pathway by binding to eEF1A1. Cellular Microbiology. 21, e13090 (2019). https://doi.org/10.1111/cmi.13090

P. A. Cavazos-Rehg, M. J. Krauss, E. L. Spitznagel, K. Bommarito, T. Madden, M. A. Olsen, H. Subramaniam, J. F. Peipert, L. J. Bierut. Maternal age and risk of labor and delivery complications. Matern Child Health J. 19, 1202-1211 (2015). https://doi.org/10.1007/s10995-014-1624-7

G. D. Vecchio, Q. Li, W. Li, S. Thamotharan, A. Tosevska, M. Morselli, K. Sung, C. Janzen, X. Zhou, M. Pellegrini, S. U. Devaskar. Cell-free DNA Methylation and Transcriptomic Signature Prediction of Pregnancies with Adverse Outcomes. Epigenetics. 16, 642–661(2021). https://doi.org/10.1080/15592294.2020.1816774

Van Rossum, G. & Drake, F.L., 2009. Python 3 Reference Manual, Scotts Valley, CA: CreateSpace.

M. D. Robinson, D. J. McCarthy, G. K. Smyth. “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics. 26, 139-140 (2010). doi:10.1093/bioinformatics/btp616.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 43, e47 (2015). https://doi.org/10.1093/nar/gkv007

Y. Benjamini, Y. Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. 57, 289-300 (1995). https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Waskom, Botvinnik, Olga, Kane, Drew, Hobson, Paul, Lukauskas, Saulius, Gemperline, David C, Qalieh, Adel. (2017). mwaskom/seaborn: v0.8.1 (September 2017). Zenodo. https://doi.org/10.5281/zenodo.883859

Z. Li, X. Pan, Y. D. Cai. Identification of Type 2 Diabetes Biomarkers From Mixed Single-Cell Sequencing Data With Feature Selection Methods. Frontiers in bioengineering and biotechnology. 10, 890901 (2022). https://doi.org/10.3389/fbioe.2022.890901

I. A. Lian, M. Langaas, E. Moses, A. Johansson. Differential gene expression at the maternal-fetal interface in preeclampsia is influenced by gestational age. PloS one. 8, e69848 (2013). https://doi.org/10.1371/journal.pone.0069848

M. V. Dijk, C. B. Oudejans. STOX1: Key player in trophoblast dysfunction underlying early onset preeclampsia with growth retardation. Journal of pregnancy. 2011, 521826 (2011). https://doi.org/10.1155/2011/521826.

K. H. Tan, S. S. Tan, S. K. Sze, W. K. R. Lee, M. J. Ng, S. K. Lim. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles. American Journal of Obstetrics and Gynecology. 211, 380.e1-380.e13 2014. https://doi.org/10.1016/j.ajog.2014.03.038.

L. Y. Liu, T. Yang, J. Ji, Q. Wen, A. A. Morgan, B. Jin, G. Chen, D. J. Lyell, D. K. Stevenson, X. B. Ling, A. J. Butte. Integrating multiple 'omics' analyses identifies serological protein biomarkers for preeclampsia. BMC medicine. 11, 236 (2013). https://doi.org/10.1186/1741-7015-11-236

“PPBP pro-Platelet Basic Protein” National Center for Biotechnology Information, U.S. National Library of Medicine, https://www.ncbi.nlm.nih.gov/gene/57349.

J. Jin, C. Zhu, J. Wang, X. Zhao, R. Yang. The association between ACTB methylation in peripheral blood and coronary heart disease in a case-control study. Frontiers in Cardiovascular Medicine. 9, 972566 (2022). https://doi.org/10.3389/fcvm.2022.972566

J. Camunas-Soler, E. P. S. Gee, M. Reddy, J. D. Mi, M. Thao, T. Brundage, F. Siddiqui, N. L. Hezelgrave, A. H. Shennan, E. Namsaraev, C. Haverty, M. Jain, M. A. Elovitz, M. Rasmussen, R. M. Tribe. Predictive RNA profiles for early and very early spontaneous preterm birth. American Journal of Obstetrectrics and Gynecology. 227, (2022). https://doi.org/10.1016/j.ajog.2022.04.002

D. Kaudewitz, P. Skroblin, L. H. Bender, T. Barwari, P. Willeit, R. Pechlaner, N. P. Sunderland, K. Willeit, A. C. Morton, P. C. Armstrong, M. V. Chan, R. Lu, X. Yin, F. Gracio, K. Dudek, S. R. Langley, A. Zampetaki, E. D. Rinaldis, S. Ye, T. D. Warner, A. Saxena, S. Kiechl, R. F. Storey, M. Mayr. Association of MicroRNAs and YRNAs With Platelet Function. AHA Journals. 118 (2015). https://doi.org/10.1161/CIRCRESAHA.114.305663

Basavaraj Vastrad and Chanabasayya Vastrad. Identification of differentially expressed genes and signaling pathways in gestational diabetes mellitus by integrated bioinformatics analysis. bioRxiv. (2021). https://doi.org/10.1101/2021.11.24.469869

H. Chen, I. Aneman, V. Nikolic, N. K. Orlic, Z. Mikovic, M Stefanovic, Z. Cakic, H. Jovanovic, S. E. L. Town, M. P. Padula, L. McClements. Maternal plasma proteome profiling of biomarkers and pathogenic mechanisms of early-onset and late-onset preeclampsia. Scientific reports. 12, 19099 (2022). https://doi.org/10.1038/s41598-022-20658-x

Y. Lu, Y. Li, G. Li, H. Lu Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis. Molecular Medicine Reports. 22, 1868-1882 (2020). https://doi.org/10.3892/mmr.2020.11281

X. Yang, T. Meng. Long Noncoding RNA in Preeclampsia: Transcriptional Noise or Innovative Indicators? BioMed research international. 2019, 5437621 (2019). https://doi.org/10.1155/2019/5437621

Siobán B. Keel, Susan Phelps, Kathleen M. Sabo, Monique N. O’Leary, Catherine B. Kirn-Safran, Janis L. Abkowitz. Establishing Rps6 hemizygous mice as a model for studying how ribosomal protein haploinsufficiency impairs erythropoiesis. Experimental Hematology. 40, 290-294 (2011). https://doi.org/10.1016/j.exphem.2011.12.003

T. Meng, H. Chen, M. Sun, H. Wang, G. Zhao, X. Wang. Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. Omics: a journal of integrative biology. 16, 301–311 (2012).. https://doi.org/10.1089/omi.2011.0066

R. Navajas, F. Corrales, A. Paradela. Quantitative proteomics-based analyses performed on pre-eclampsia samples in the 2004–2020 period: a systematic review. Clinical Proteomics. 18 (2021). https://doi.org/10.1186/s12014-021-09313-1.

S. A. Abdelazim, O. G. Shaker, Y. A. H. Aly, M. A. Senousy. Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci Rep. 12, 1249 (2022). https://doi.org/10.1038/s41598-022-05119-9

M. K. Farag, N. A. E. Maksoud, H. M. Ragab, K. R. Gaber. Predictive value of cystatin C and beta-2 microglobulin in preeclampsia. Journal of Genetic Engineering and Biotechnology. 9, 133-136 (2011). https://doi.org/10.1016/j.jgeb.2011.09.003

K. Kristensen, D. Wide-Swensson, C. Schmidt , S. Blirup-Jensen , V. Lindstro, H. Strevens, A. Grubb. Cystatin C, β-2-Microglobulin and β-Trace Protein in Pre-Eclampsia. Acta Obstetricia et Gynecologica. 86, 921926 (2007). https://obgyn.onlinelibrary.wiley.com/doi/pdf/10.1080/00016340701318133.

Z. Ou, Q. Li, W. Liu, X. Sun. Elevated Hemoglobin A2 as a Marker for β-Thalassemia Trait in Pregnant Women. The Tohoku Journal of Experimental Medicine. 223, 223-226 (2011). https://doi.org/10.1620/tjem.223.223

R. Boufermes, D. Haddad. Correlation between the Diabetic Marker (Hba1c) and the Anemia Marker (Hba2) In Type 2 Diabetes. Journal of Geriatric Research. 4, (2020). https://www.imedpub.com/abstract/correlation-between-the-diabetic-marker-hba1c-and-the-anemia-marker-hba2-in-type-2-diabetes-29532.html.

X. Yang, Y. Ding, L. Sun, M. Shi, P. Zhang, Z. Huang, J. Wang, A. He, J. Wang, J. Wei, M. Liu, J. Liu, G. Wang, X. Yang, R. Li. Ferritin light chain deficiency-induced ferroptosis is involved in preeclampsia pathophysiology by disturbing uterine spiral artery remodelling. Redox Biology. 58, 2213-2317 (2022). https://doi.org/10.1016/j.redox.2022.102555.

E. Pandur, I. Szabó, E. Hormay, R. Pap, A. Almási, K. Sipos, V. Farkas, Z. Karádi. Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model. Diabetol Metab Syndr. 14, 147 (2022). https://doi.org/10.1186/s13098-022-00919-5

G. Fan, Y. Gu, J. Zhang, Y. Xin, J. Shao, F. Giampieri, M. Battino. Transthyretin Upregulates Long Non-Coding RNA MEG3 by Affecting PABPC1 in Diabetic Retinopathy. International Journal of Molecular Sciences. 20, 6313 (2019). https://doi.org/10.3390/ijms20246313

R. Verma, P. Verma, S. Budhwar, K. Singh. S100 proteins: An emerging cynosure in pregnancy & adverse reproductive outcome. The Indian journal of medical research. 148(Suppl), S100–S106 (2018). https://doi.org/10.4103/ijmr.IJMR_494_18

X. Li, F. Cheng, G. Cao. Expression of S100 calcium-binding protein A8 in peripheral blood of patients with preeclampsia during pregnancy. European Journal of Inflammation. 17 (2019). https://doi.org/10.1177/2058739219858527

E. Jurewicz, A. Filipek. Ca2+- binding proteins of the S100 family in preeclampsia. Placenta. 127, 43-51 (2022). https://doi.org/10.1016/j.placenta.2022.07.018

W. Siwen, S. Rui, W. Ziyi, J. Zhaocheng, W. Shaoxiong, M. Jian. S100A8/A9 in Inflammation. Frontiers in Immunology. 9, 1664-3224 (2018). https://doi.org/10.3389/fimmu.2018.01298

H. S. Gammill, R. Chettier, A. Brewer, J. M. Roberts, R. Shree, E. Tsigas, K. Ward. Cardiomyopathy and Preeclampsia. Circulation. 138, 2359–2366 (2018). https://doi.org/10.1161/CIRCULATIONAHA.117.031527

C. W. Ives, R. Sinkey, I. Rajapreyar, A. T. N. Tita, S. Oparil. Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 76, 1690-1702 (2020). https://doi.org/10.1016/j.jacc.2020.08.014

P. Csaicsich, J. Deutinger, G. Tatra. Platelet-specific proteins (beta-thromboglobulin and platelet factor 4) in normal pregnancy and in pregnancy complicated by preeclampsia. Archives of gynecology and obstetrics. 244, 91–95 (1989). https://doi.org/10.1007/BF00931379

A. A. Saleh, S. F. Bottoms, A. M. Farag, M. P. Dombrowski, R. A. Welch, G. Norman, E. F. Mammen. Markers for endothelial injury, clotting and platelet activation in preeclampsia. Arch Gynecol Obstet. 251, 105–110 (1992). https://doi.org/10.1007/BF02718370

Y. Wen, M. Cheng, L. Qin, W. Xu. TNFα-induced abnormal activation of TNFR/NF-κB/FTH1 in endometrium is involved in the pathogenesis of early spontaneous abortion. Journal of cellular and molecular medicine. 26, 2947–2958 (2022). https://doi.org/10.1111/jcmm.17308

N. Yang, Q. Wang, B. Ding, Y. Gong, Y. Wu, J. Sun, X. Wang, L. Liu, F. Zhang, D. Du, X. Li. Expression profiles and functions of ferroptosis-related genes in the placental tissue samples of early- and late-onset preeclampsia patients. BMC Pregnancy Childbirth. 22, 87 (2022). https://doi.org/10.1186/s12884-022-04423-6

K. Murata, Y. Miyamura, N. Toyoda, Y. Ikeda, Y. Kozuka, Y. Sugiyama. Nihon Sanka Fujinka Gakkai zasshi. 33, 1669–1674 (1981).

L. Baxi, E. A. Reece, D. Barad, R. Farber, A. Williams. Glycosylated hemoglobin (HbA1) and hemoglobinopathies in pregnancy. De Gruyter. 12, 133-136 (1984). https://doi.org/10.1515/jpme.1984.12.3.133

Published

08-31-2023

How to Cite

Somu, M. (2023). Non-Invasive Biomarker Detection for Pregnancy Complications Using Cell-Free RNA. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4564

Issue

Section

HS Research Projects