The Application of Artificial Intelligence and Machine Learning to Anesthesiology
DOI:
https://doi.org/10.47611/jsrhs.v12i2.4403Keywords:
Artificial Intelligence, Machine Learning, Anesthesiology, Deep Learning, Decision-Making, AlgorithmAbstract
This research paper explores the application of artificial intelligence (AI) and machine learning (ML) in anesthesiology. AI and ML have the potential to improve patient outcomes and enhance clinical decision-making by enabling anesthesiologists to monitor patient vital signs in real-time, predict the likelihood of complications, and optimize drug dosages to minimize side effects and enhance efficacy. The Hypotension Prediction Index algorithm is a compelling example of how AI and ML can be utilized to improve intraoperative patient care. However, there is a need for further research and validation to ensure the safety and efficacy of these technologies in clinical practice. Future advancements in AI and ML techniques are likely to result in more sophisticated and accurate predictive models, decision support tools, and monitoring systems that will ultimately benefit patients undergoing anesthesia. Overall, the application of AI and ML in anesthesiology presents a promising avenue for improving patient care and outcomes.
Downloads
References or Bibliography
Maheshwari, K., & Ahuja, S. (2020). Artificial intelligence in anesthesia: current perspectives. Anesthesiology Research and Practice, 2020. doi: 10.1155/2020/8830465
Chau, A., & Ehrenfeld, J. M. (2020). Using artificial intelligence to improve patient safety in perioperative care. Anesthesia & Analgesia, 130(3), 709-716. doi: 10.1213/ANE.0000000000004655
Xu, X., Sleigh, J., Liu, J., Li, P., Wu, J., Liang, J., ... & Zhang, X. (2021). Application of artificial intelligence in anesthesia. Current Opinion in Anaesthesiology, 34(3), 384-390. doi: 10.1097/ACO.0000000000000979
Wang, S., Zhi, D., Zhang, X., Ji, G., & Liu, K. (2019). Using artificial intelligence to reduce the risk of postoperative complications in patients undergoing surgery. Anesthesiology, 131(3), 541-548. Doi: 10.1097/ALN.0000000000002851
Lee, J. E., Lee, J. H., Jung, J. Y., Kwak, H. J., & Lee, E. K. (2019). Predicting propofol dose for desired sedation levels using artificial neural networks in gastrointestinal endoscopy. Anesthesiology, 131(4), 777-785. doi: 10.1097/ALN.0000000000002876
Chu, L., Hannesdottir, K., Laine, A., Joosten, A., Pasma, W., van der Vaart, M., ... & Vakkuri, A. (2018). Anesthesia information management system-based near real-time decision support to manage intraoperative hypotension and hypertension. Journal of Clinical Monitoring and Computing, 32(2), 309-317. doi: 10.1007/s10877-017-0019-1
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Seminars in Cancer Biology, 52, 10-16. doi: 10.1016/j.semcancer.2017.12.004
Acosta, D., Kurz, A., & Sessler, D. I. (2019). Perioperative myocardial injury: from pathophysiology to prevention and management. Current Opinion in Anaesthesiology, 32(1), 1-9. doi: 10.1097/ACO.0000000000000674
Lee, H. C., Jung, C. W., Lee, S. H., & Kim, J. T. (2019). Predicting hypotension during spinal anesthesia for cesarean delivery using machine learning. Acta Anaesthesiologica Scandinavica, 63(10), 1291-1300. doi: 10.1111/aas.13440
Mehta, N., Pandharipande, P. P., & Ely, E. W. (2021). Sedation in mechanically ventilated adults: choosing wisely in the ICU. Chest, 159(5), 2055-2064. doi: 10.1016/j.chest.2020.10.051
Liew, M. F., Siow, W. T., Macachor, J. D., Yap, E. P. H., & Keng, T. C. (2021). Machine learning for predicting adverse events in patients undergoing general anesthesia: a systematic review. Journal of Clinical Medicine, 10(8), 1749. https://doi.org/10.3390/jcm10081749
Peng, M., Zhang, R., Zhou, L., Han, Y., Zhang, X., Yang, X., ... & Shi, Y. (2021). The perioperative artificial intelligence system (POEMAS) for clinical decision support in perioperative fluid therapy: a single-center randomized controlled trial. Anesthesiology, 134(1), 73-84. https://doi.org/10.1097/ALN.0000000000003519
Liu, N., Chazot, T., Genty, A., Landais, A., Restoux, A., McGee, K., ... & Liu, N. (2018). Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: Closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesia & Analgesia, 126(1), 103-111. doi: 10.1213/ANE.0000000000002501
Oh, J., Lee, S., & Kim, J. T. (2019). Prediction of the optimal propofol effect-site concentration using pharmacodynamic and machine learning models during upper gastrointestinal endoscopy. Journal of Clinical Medicine, 8(11), 1881. doi: 10.3390/jcm8111881
Sessler, D. I., & Khanna, A. K. (2018). Perioperative myocardial injury and the contribution of hypotension. Intensive care medicine, 44(6), 811-822. doi: 10.1007/s00134-018-5171-3
Joudi, A., Jafari, A., Najafi, M., & Masjedi, M. (2019). Anesthesia, artificial intelligence, and patient safety: a review. Patient safety in surgery, 13(1), 1-7. doi: 10.1186/s13037-019-0194-4
Euliano, N. R., & West, N. H. (2019). Machine learning in anesthesia. Current opinion in anaesthesiology, 32(4), 509-513. doi: 10.1097/ACO.0000000000000754
Mahajan, R., Gupta, K., & Gupta, P. K. (2021). Machine learning in anesthesia. In Anesthesia and Critical Care in the COVID-19 Era (pp. 57-67). Springer, Singapore. doi: 10.1007/978-981-15-8656-3_6
Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. Critical care medicine, 46(4), 547-553. doi: 10.1097/CCM.0000000000002927
Khanna, A. K., Hoppe, P., Saugel, B., & Maitland, K. (2020). Artificial intelligence for the detection of hypotension during surgery. Anesthesia & Analgesia, 130(4), 1061-1071. doi: 10.1213/ANE.0000000000004662
Solt, K., & Dutton, R. P. (2015). Intravenous non-opioid anesthesia: characteristics and potential role. Anesthesia & Analgesia, 121(2), 548-565. doi: 10.1213/ANE.0000000000000808
Hatib, F., Jian, Z., Buddi, S., Lee, C., Settels, J., Sibert, K., ... & Cannesson, M. (2016). Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology, 124(3), 672-681. doi: 10.1097/ALN.0000000000001004
Published
How to Cite
Issue
Section
Copyright (c) 2023 Srinithya Kothapalli; Dr. Rajagopal Appavu PhD.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.