Neuroprotective and detrimental effects of astrocytes on amyloid plaque formation
DOI:
https://doi.org/10.47611/jsrhs.v12i1.4295Keywords:
Alzheimer's Disease, Astrocytes, Microglia, Aβ plaqueAbstract
In Alzheimer’s disease (AD) brains, reactive astrocytes and microglia are frequently seen around amyloid plaques. The functions of microglia have been extensively studied, such as the neuroprotective barrier they form to prevent plaque growth and their release of inflammatory cytokines. However, the functions of astrocytes are less well known. Here I review the ongoing research on astrocytic functions around plaques. Recent studies suggest that astrocytes play an important role in downregulating Aβ production through the production of cholesterol and reducing plaque deposition through Aβ uptake and clearance. Astrocytes also interact with microglia through the clusterin and C3 pathways, possibly altering Aβ fibril formation and microglia phagocytosis. On the other hand, astrocytes contribute to elevated glutamate and GABA levels, potentially causing excitotoxicity and accelerating cognitive decline. Finally, I review two possible therapeutic treatments, ceftriaxone and selegiline, for alleviating AD pathology by targeting astrocyte functions. Given their crucial and complex roles in AD, a better understand of astrocyte functions would contribute to a greater understanding of AD progression and uncover new therapeutic targets.
Downloads
References or Bibliography
Chen, F., Swartzlander, D.B., Ghosh, A., Fryer, J.D., Wang, B., and Zheng, H. (2021). Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer's disease neuropathology. Mol Neurodegener 16, 5. https://doi.org/10.1186/s13024-021-00426-7
Chun, H., Im, H., Kang, Y.J., Kim, Y., Shin, J.H., Won, W., Lim, J., Ju, Y., Park, Y.M., Kim, S., et al. (2020). Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2(-) production. Nat Neurosci 23, 1555-1566. https://doi.org/10.1038/s41593-020-00735-y
Condello, C., Yuan, P., and Grutzendler, J. (2018). Microglia-Mediated Neuroprotection, TREM2, and Alzheimer's Disease: Evidence From Optical Imaging. Biol Psychiatry 83, 377-387. https://doi.org/10.1016/j.biopsych.2017.10.007
Condello, C., Yuan, P., Schain, A., and Grutzendler, J. (2015). "Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques." Nat Commun 6, 6176. https://doi.org/10.1093/brain/aww016
Gomez-Isla, T., and Frosch, M.P. (2022). "Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes." Nat Rev Neurol 18, 323-332. https://doi.org/10.1186/s13073-023-01155-w
Gouras, G.K., Willen, K., and Faideau, M. (2014). The inside-out amyloid hypothesis and synapse pathology in Alzheimer's disease. Neurodegener Dis 13, 142-146. https://doi.org/10.1159/000354776
Harada, R., Furumoto, S., Kudo, Y., Yanai, K., Villemagne, V.L., and Okamura, N. (2022). Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci 16, 807435. https://doi.org/10.3389/fnins.2022.807435
Hefendehl, J.K., LeDue, J., Ko, R.W., Mahler, J., Murphy, T.H., and MacVicar, B.A. (2016). Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Abeta plaques by iGluSnFR two-photon imaging. Nat Commun 7, 13441. https://doi.org/10.1038/ncomms13441
Jiwaji, Z., Tiwari, S.S., Aviles-Reyes, R.X., Hooley, M., Hampton, D., Torvell, M., Johnson, D.A., McQueen, J., Baxter, P., Sabari-Sankar, K., et al. (2022). Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Ass pathology. Nat Commun 13, 135. https://doi.org/10.1038/s41467-021-27702-w
Jo, S., Yarishkin, O., Hwang, Y.J., Chun, Y.E., Park, M., Woo, D.H., Bae, J.Y., Kim, T., Lee, J., Chun, H., et al. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 20, 886-896. https://doi.org/10.1038/nm.3639
Kok, F.K., van Leerdam, S.L., and de Lange, E.C.M. (2022). Potential Mechanisms Underlying Resistance to Dementia in Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 87, 51-81. https://doi.org/10.3233/JAD-210607
Kuchibhotla, K.V., Lattarulo, C.R., Hyman, B.T., and Bacskai, B.J. (2009). Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211-1215. https://doi.org/10.1126/science.1169096
Kumar, A., Fontana, I.C., and Nordberg, A. (2021). Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer's disease. J Neurochem. https://doi.org/10.1111/jnc.15565
Kummer, M.P., Ising, C., Kummer, C., Sarlus, H., Griep, A., Vieira-Saecker, A., Schwartz, S., Halle, A., Bruckner, M., Handler, K., et al. (2021). Microglial PD-1 stimulation by astrocytic PD-L1 suppresses neuroinflammation and Alzheimer's disease pathology. EMBO J 40, e108662. https://doi.org/10.15252/embj.2021108662
Lee, J.H., Yang, D.S., Goulbourne, C.N., Im, E., Stavrides, P., Pensalfini, A., Chan, H., Bouchet-Marquis, C., Bleiwas, C., Berg, M.J., et al. (2022). Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25, 688-701. https://doi.org/10.1038/s41593-022-01084-8
Lian, H., Litvinchuk, A., Chiang, A.C., Aithmitti, N., Jankowsky, J.L., and Zheng, H. (2016). Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci 36, 577-589. https://doi.org/10.1523/JNEUROSCI.2117-15.2016
Liu, Z., Condello, C., Schain, A., Harb, R., and Grutzendler, J. (2010). CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci 30, 17091-17101. https://doi.org/10.1523/JNEUROSCI.4403-10.2010
Madison, B.B. (2016). Srebp2: A master regulator of sterol and fatty acid synthesis. J Lipid Res 57, 333-335.
Mitew, S., Kirkcaldie, M.T., Dickson, T.C., and Vickers, J.C. (2013). Altered synapses and gliotransmission in Alzheimer's disease and AD model mice. Neurobiol Aging 34, 2341-2351. https://doi.org/10.1194/jlr.C066712
Mookherjee, P., Green, P.S., Watson, G.S., Marques, M.A., Tanaka, K., Meeker, K.D., Meabon, J.S., Li, N., Zhu, P., Olson, V.G., et al. (2011). GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis 26, 447-455. https://doi.org/10.3233/JAD-2011-110503
Ovsepian, S.V., O'Leary, V.B., Zaborszky, L., Ntziachristos, V., and Dolly, J.O. (2019). Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist 25, 288-297. https://doi.org/10.1177/1073858418791128
Pekny, M., Pekna, M., Messing, A., Steinhauser, C., Lee, J.M., Parpura, V., Hol, E.M., Sofroniew, M.V., and Verkhratsky, A. (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathol 131, 323-345. https://doi.org/10.1007/s00401-015-1513-1
Raha, S., Ghosh, A., Dutta, D., Patel, D.R., and Pahan, K. (2021). Activation of PPARalpha enhances astroglial uptake and degradation of beta-amyloid. Sci Signal 14, eabg4747. https://doi.org/10.1126/scisignal.abg4747
Rothstein, J.D., Patel, S., Regan, M.R., Haenggeli, C., Huang, Y.H., Bergles, D.E., Jin, L., Dykes Hoberg, M., Vidensky, S., Chung, D.S., et al. (2005). Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73-77. https://doi.org/10.1038/nature03180
Tsai, J., Grutzendler, J., Duff, K., and Gan, W.B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7, 1181-1183. https://doi.org/10.1038/nn1335
Verkhratsky, A., Rodrigues, J.J., Pivoriunas, A., Zorec, R., and Semyanov, A. (2019). Astroglial atrophy in Alzheimer's disease. Pflugers Arch 471, 1247-1261. https://doi.org/10.1007/s00424-019-02310-2
Vickers, J.C., Mitew, S., Woodhouse, A., Fernandez-Martos, C.M., Kirkcaldie, M.T., Canty, A.J., McCormack, G.H., and King, A.E. (2016). Defining the earliest pathological changes of Alzheimer's disease. Curr Alzheimer Res 13, 281-287. https://doi.org/10.2174/1567205013666151218150322
Wang, H., Kulas, J.A., Wang, C., Holtzman, D.M., Ferris, H.A., and Hansen, S.B. (2021). Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2102191118
Wojtas, A.M., Sens, J.P., Kang, S.S., Baker, K.E., Berry, T.J., Kurti, A., Daughrity, L., Jansen-West, K.R., Dickson, D.W., Petrucelli, L., et al. (2020). Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol Neurodegener 15, 71. https://doi.org/10.1186/s13024-020-00416-1
Wu, Z., Guo, Z., Gearing, M., and Chen, G. (2014). Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model. Nat Commun 5, 4159. https://doi.org/10.1038/ncomms5159
Yang, A.J.T., Bagit, A., and MacPherson, R.E.K. (2021a). Resveratrol, Metabolic Dysregulation, and Alzheimer's Disease: Considerations for Neurogenerative Disease. Int J Mol Sci 22. https://doi.org/10.3390/ijms22094628
Yang, S., Magnutzki, A., Alami, N.O., Lattke, M., Hein, T.M., Scheller, J.S., Kroger, C., Oswald, F., Yilmazer-Hanke, D., Wirth, T., et al. (2021b). IKK2/NF-kappaB Activation in Astrocytes Reduces amyloid beta Deposition: A Process Associated with Specific Microglia Polarization. Cells 10. https://doi.org/10.3390/cells10102669
Yuan, P., Condello, C., Keene, C.D., Wang, Y., Bird, T.D., Paul, S.M., Luo, W., Colonna, M., Baddeley, D., and Grutzendler, J. (2016). TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron 90, 724-739. https://doi.org/10.1016/j.neuron.2016.05.003
Yuan, P., Zhang, M., Tong, L., Morse, T.M., McDougal R.A., Ding, H., Chan, D., Cai, Y., Grutzendler, J. (2022). PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature 612, 328–337. https://doi.org/10.1038/s41586-022-05491-6
Zhao, R., Hu, W., Tsai, J., Li, W., and Gan, W.B. (2017). Microglia limit the expansion of beta-amyloid plaques in a mouse model of Alzheimer's disease. Mol Neurodegener 12, 47. https://doi.org/10.1186/s13024-017-0188-6
Zinselmeyer, B.H., Heydari, S., Sacristan, C., Nayak, D., Cammer, M., Herz, J., Cheng, X., Davis, S.J., Dustin, M.L., and McGavern, D.B. (2013). PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med 210, 757-774. https://doi.org/10.1084/jem.20121416
Zumkehr, J., Rodriguez-Ortiz, C.J., Cheng, D., Kieu, Z., Wai, T., Hawkins, C., Kilian, J., Lim, S.L., Medeiros, R., and Kitazawa, M. (2015). Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol Aging 36, 2260-2271. https://doi.org/10.1016/j.neurobiolaging.2015.04.005
Published
How to Cite
Issue
Section
Copyright (c) 2023 Hao-Ran Gan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.