Efficacy and Potential of Stem Cell Therapy for Alzheimer’s Disease
DOI:
https://doi.org/10.47611/jsrhs.v12i1.4106Keywords:
Alzheimer's disease, stem cell therapy, dementia, mesenchymal stem cells, embryonic stem cells, neural stem cells, induced pluripotent stem cells, neurodegenerative, Parkinson’s disease, Huntington’s disease, Multiple SclerosisAbstract
Alzheimer’s Disease (AD) is characterized primarily by the buildup of beta-amyloid plaques and tau proteins. It is a very common neurodegenerative disease that is marked by cognitive decline, neuronal and synaptic loss. AD pathology is not fully understood and there is currently no cure. The disease is terminal and devastates the lives of many. Stem cell therapy involves the use of stem cell’s properties of regeneration and repair to reverse the damage of many diseases. The application of stem cell therapy to AD seems to have the promise to mitigate and reverse the onset of AD. Animal models have displayed the effectiveness of stem cell therapy towards AD by improving cognitive performance and promoting neurogenesis. The abilities and applications of stem cell therapy seem to be highly promising despite having bottlenecks. The difficulties in controlling differentiation due to complexities in controlling the process is the primary issue presented. With the use of stem cell therapy for AD, it is also possible to adapt the technology to various other neurodegenerative diseases and various diseases overall.
Downloads
References or Bibliography
Wuli, W., Tsai, S. T., Chiou, T. W., & Harn, H. J. (2020). Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. International journal of molecular sciences, 21(4), 1327. https://doi.org/10.3390/ijms21041327
Pacheco-Herrero, M., Soto-Rojas, L. O., Reyes-Sabater, H., Garcés-Ramirez, L., de la Cruz López, F., Villanueva-Fierro, I., & Luna-Muñoz, J. (2021). Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 84(3), 917–935. https://doi.org/10.3233/JAD-200863
Chan, H. J., Yanshree, Roy, J., Tipoe, G. L., Fung, M. L., & Lim, L. W. (2021). Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. International journal of molecular sciences, 22(18), 10151. https://doi.org/10.3390/ijms221810151
Vasic, V., Barth, K., & Schmidt, M. H. H. (2019). Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. International journal of molecular sciences, 20(17), 4272. https://doi.org/10.3390/ijms20174272
Duncan, T., & Valenzuela, M. (2017). Alzheimer's disease, dementia, and stem cell therapy. Stem cell research & therapy, 8(1), 111. https://doi.org/10.1186/s13287-017-0567-5
Pacheco-Herrero, M., Soto-Rojas, L. O., Reyes-Sabater, H., Garcés-Ramirez, L., de la Cruz López, F., Villanueva-Fierro, I., & Luna-Muñoz, J. (2021). Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 84(3), 917–935. https://doi.org/10.3233/JAD-200863
Penney, J., Ralvenius, W. T., & Tsai, L. H. (2020). Modeling Alzheimer's disease with iPSC-derived brain cells. Molecular psychiatry, 25(1), 148–167. https://doi.org/10.1038/s41380-019-0468-3
Chan, H. J., Yanshree, Roy, J., Tipoe, G. L., Fung, M.-L., & Lim, L. W. (2021, September 21). Therapeutic potential of human stem cell implantation in alzheimer's disease. International journal of molecular sciences. Retrieved November 30, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471075/table/ijms-22-10151-t003/?report=objectonly
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5
Liu, X. Y., Yang, L. P., & Zhao, L. (2020). Stem cell therapy for Alzheimer's disease. World journal of stem cells, 12(8), 787–802. https://doi.org/10.4252/wjsc.v12.i8.787
Pandey, S., Jirásko, M., Lochman, J., Chvátal, A., Chottova Dvorakova, M., & Kučera, R. (2022). iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine. Journal of personalized medicine, 12(9), 1485. https://doi.org/10.3390/jpm12091485
Peng, B. Y., Dubey, N. K., Mishra, V. K., Tsai, F. C., Dubey, R., Deng, W. P., & Wei, H. J. (2018). Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. Journal of diabetes research, 2018, 7806435. https://doi.org/10.1155/2018/7806435
Taylor, C. A., Greenlund, S. F., McGuire, L. C., Lu, H., & Croft, J. B. (2017, May 26). Deaths from alzheimer's disease - united states, 1999-2014. MMWR. Morbidity and mortality weekly report. Retrieved November 30, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657871/table/T1/?report=objectonly
Riordan, N. H., Morales, I., Fernández, G., Allen, N., Fearnot, N. E., Leckrone, M. E., Markovich, D. J., Mansfield, D., Avila, D., Patel, A. N., Kesari, S., & Paz Rodriguez, J. (2018). Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. Journal of translational medicine, 16(1), 57. https://doi.org/10.1186/s12967-018-1433-7
Bronwen Connor, Concise Review: The Use of Stem Cells for Understanding and Treating Huntington's Disease, Stem Cells, Volume 36, Issue 2, February 2018, Pages 146–160, https://doi.org/10.1002/stem.2747
Liu, Z., & Cheung, H. H. (2020). Stem Cell-Based Therapies for Parkinson Disease. International journal of molecular sciences, 21(21), 8060. https://doi.org/10.3390/ijms21218060
Sonntag, K. C., Song, B., Lee, N., Jung, J. H., Cha, Y., Leblanc, P., Neff, C., Kong, S. W., Carter, B. S., Schweitzer, J., & Kim, K. S. (2018). Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Progress in neurobiology, 168, 1–20. https://doi.org/10.1016/j.pneurobio.2018.04.005
Cummings, J. L., Tong, G., & Ballard, C. (2019). Treatment Combinations for Alzheimer's Disease: Current and Future Pharmacotherapy Options. Journal of Alzheimer's disease : JAD, 67(3), 779–794. https://doi.org/10.3233/JAD-180766
Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer's disease: Targeting the Cholinergic System. Current neuropharmacology, 14(1), 101–115. https://doi.org/10.2174/1570159x13666150716165726
Kolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration; international review of thoracic diseases, 85(1), 3–10. https://doi.org/10.1159/000345615
Yue, W., Li, Y., Zhang, T., Jiang, M., Qian, Y., Zhang, M., Sheng, N., Feng, S., Tang, K., Yu, X., Shu, Y., Yue, C., & Jing, N. (2015). ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer's Disease in Mouse Models. Stem cell reports, 5(5), 776–790. https://doi.org/10.1016/j.stemcr.2015.09.010
Bryda E. C. (2013). The Mighty Mouse: the impact of rodents on advances in biomedical research. Missouri medicine, 110(3), 207–211.
Fujiwara, N., Shimizu, J., Takai, K., Arimitsu, N., Saito, A., Kono, T., Umehara, T., Ueda, Y., Wakisaka, S., Suzuki, T., & Suzuki, N. (2013). Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neuroscience letters, 557 Pt B, 129–134.
Neves, A. F., Camargo, C., Premer, C., Hare, J. M., Baumel, B. S., & Pinto, M. (2021). Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer's disease. Experimental neurology, 341, 113706. https://doi.org/10.1016/j.expneurol.2021.113706
Yang, H., Xie, Z., Wei, L., Yang, H., Yang, S., Zhu, Z., Wang, P., Zhao, C., & Bi, J. (2013). Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem cell research & therapy, 4(4), 76. https://doi.org/10.1186/scrt227
Liu, J., Chang, L., Song, Y., Li, H., & Wu, Y. (2019). The Role of NMDA Receptors in Alzheimer's Disease. Frontiers in neuroscience, 13, 43. https://doi.org/10.3389/fnins.2019.00043
Hampel, H., & Blennow, K. (2004). CSF tau and β-amyloid as biomarkers for mild cognitive impairment. Dialogues in clinical neuroscience, 6(4), 379–390. https://doi.org/10.31887/DCNS.2004.6.4/hhampel
National Research Council (US) and Institute of Medicine (US) Committee on the Biological and Biomedical Applications of Stem Cell Research. Stem Cells and the Future of Regenerative Medicine. Washington (DC): National Academies Press (US); 2002. CHAPTER THREE, Embryonic Stem Cells. Available from: https://www.ncbi.nlm.nih.gov/books/NBK223690/
Alzheimer's Disease Facts and Figures - Wiley Online Library. (n.d.). Retrieved December 1, 2022, from https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.jalz.2019.01.010
Niikura, T., Tajima, H., & Kita, Y. (2006). Neuronal cell death in Alzheimer's disease and a neuroprotective factor, humanin. Current neuropharmacology, 4(2), 139–147. https://doi.org/10.2174/157015906776359577
Penney, J., Ralvenius, W.T. & Tsai, LH. Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry 25, 148–167 (2020). https://doi.org/10.1038/s41380-019-0468-3
Zhang, F. Q., Jiang, J. L., Zhang, J. T., Niu, H., Fu, X. Q., & Zeng, L. L. (2020). Current status and future prospects of stem cell therapy in Alzheimer's disease. Neural regeneration research, 15(2), 242–250. https://doi.org/10.4103/1673-5374.265544
Hwang, N. S., Varghese, S., & Elisseeff, J. (2008). Controlled differentiation of stem cells. Advanced drug delivery reviews, 60(2), 199–214. https://doi.org/10.1016/j.addr.2007.08.036
U.S. Department of Health and Human Services. (n.d.). How is alzheimer's disease treated? National Institute on Aging. Retrieved November 30, 2022, from https://www.nia.nih.gov/health/how-alzheimers-disease-treated
Medications for memory, cognition and dementia-related behaviors. Alzheimer's Disease and Dementia. (n.d.). Retrieved November 30, 2022, from https://www.alz.org/alzheimers-dementia/treatments/medications-for-memory
Congdon, E. E., & Sigurdsson, E. M. (2018). Tau-targeting therapies for Alzheimer disease. Nature reviews. Neurology, 14(7), 399–415. https://doi.org/10.1038/s41582-018-0013-z
Vitek, M. P., Araujo, J. A., Fossel, M., Greenberg, B. D., Howell, G. R., Rizzo, S. J. S., Seyfried, N. T., Tenner, A. J., Territo, P. R., Windisch, M., Bain, L. J., Ross, A., Carrillo, M. C., Lamb, B. T., & Edelmayer, R. M. (2021). Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank. Alzheimer's & dementia (New York, N. Y.), 6(1), e12114. https://doi.org/10.1002/trc2.12114
Sini, P., Dang, T. B. C., Fais, M., Galioto, M., Padedda, B. M., Lugliè, A., Iaccarino, C., & Crosio, C. (2021). Cyanobacteria, Cyanotoxins, and Neurodegenerative Diseases: Dangerous Liaisons. International journal of molecular sciences, 22(16), 8726. https://doi.org/10.3390/ijms22168726
Urrutia, D. N., Caviedes, P., Mardones, R., Minguell, J. J., Vega-Letter, A. M., & Jofre, C. M. (2019). Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PloS one, 14(3), e0213032. https://doi.org/10.1371/journal.pone.0213032
Kang, S., Chen, X., Gong, S. et al. Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci Rep 7, 12233 (2017). https://doi.org/10.1038/s41598-017-12452-x
Li, H., Liu, H., Corrales, C. E., Risner, J. R., Forrester, J., Holt, J. R., Heller, S., & Edge, A. S. (2009). Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells. BMC neuroscience, 10, 122. https://doi.org/10.1186/1471-2202-10-122
Weiwei Xue, Caixia Fan, Bing Chen, Yannan Zhao, Zhifeng Xiao, Jianwu Dai, Direct Neuronal Differentiation of Neural Stem Cells for Spinal Cord Injury Repair, Stem Cells, Volume 39, Issue 8, August 2021, Pages 1025–1032, https://doi.org/10.1002/stem.3366
Ma, S., Zang, T., Liu, ML. et al. Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer’s disease. Mol Neurodegeneration 15, 61 (2020). https://doi.org/10.1186/s13024-020-00411-6
Beauchamp, P., Jackson, C. B., Ozhathil, L. C., Agarkova, I., Galindo, C. L., Sawyer, D. B., Suter, T. M., & Zuppinger, C. (2020). 3D Co-culture of hiPSC-Derived Cardiomyocytes With Cardiac Fibroblasts Improves Tissue-Like Features of Cardiac Spheroids. Frontiers in molecular biosciences, 7, 14. https://doi.org/10.3389/fmolb.2020.00014
Acharya, M. M., Christie, L. A., Lan, M. L., Donovan, P. J., Cotman, C. W., Fike, J. R., & Limoli, C. L. (2009). Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19150–19155. https://doi.org/10.1073/pnas.0909293106
Huang, L., & Zhang, L. (2019). Neural stem cell therapies and hypoxic-ischemic brain injury. Progress in neurobiology, 173, 1–17. https://doi.org/10.1016/j.pneurobio.2018.05.004
U.S. Department of Health and Human Services. (n.d.). Parkinson's disease: Causes, symptoms, and treatments. National Institute on Aging. Retrieved November 30, 2022, from https://www.nia.nih.gov/health/parkinsons-disease
Huntington's disease. Huntington's Disease | Johns Hopkins Medicine. (2021, August 8). Retrieved November 30, 2022, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/huntingtons-disease#:~:text=Huntington%20disease%20is%20a%20brain,intellectual%20abilities%2C%20and%20uncontrolled%20movements.
Mayo Foundation for Medical Education and Research. (2022, January 7). Multiple sclerosis. Mayo Clinic. Retrieved November 30, 2022, from https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269
Hoveizi, E., Mohammadi, T., Moazedi, A. A., Zamani, N., & Eskandary, A. (2018). Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy, 20(7), 964–973. https://doi.org/10.1016/j.jcyt.2018.03.036
Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., Van Camp, N., Perrier, A. L., Hantraye, P., Björklund, A., & Parmar, M. (2014). Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease. Cell stem cell, 15(5), 653–665. https://doi.org/10.1016/j.stem.2014.09.017
Kirkeby, A., Nolbrant, S., Tiklova, K., Heuer, A., Kee, N., Cardoso, T., Ottosson, D. R., Lelos, M. J., Rifes, P., Dunnett, S. B., Grealish, S., Perlmann, T., & Parmar, M. (2017). Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell stem cell, 20(1), 135–148. https://doi.org/10.1016/j.stem.2016.09.004
Francisco J. Rivera, Sebastien Couillard‐Despres, Xiomara Pedre, Sonja Ploetz, Massimiliano Caioni, Carlos Lois, Ulrich Bogdahn, Ludwig Aigner, Mesenchymal Stem Cells Instruct Oligodendrogenic Fate Decision on Adult Neural Stem Cells, Stem Cells, Volume 24, Issue 10, October 2006, Pages 2209–2219, https://doi.org/10.1634/stemcells.2005-0614
Safety Evaluation of cellavita HD administered intravenously in participants with Huntington's disease - full text view. Safety Evaluation of Cellavita HD Administered Intravenously in Participants With Huntington's Disease - Full Text View - ClinicalTrials.gov. (n.d.). Retrieved November 30, 2022, from https://clinicaltrials.gov/ct2/show/study/NCT02728115
Jurcau, A., & Jurcau, M. C. (2022). Therapeutic Strategies in Huntington's Disease: From Genetic Defect to Gene Therapy. Biomedicines, 10(8), 1895. https://doi.org/10.3390/biomedicines10081895
Reidling, J. C., Relaño-Ginés, A., Holley, S. M., Ochaba, J., Moore, C., Fury, B., Lau, A., Tran, A. H., Yeung, S., Salamati, D., Zhu, C., Hatami, A., Cepeda, C., Barry, J. A., Kamdjou, T., King, A., Coleal-Bergum, D., Franich, N. R., LaFerla, F. M., Steffan, J. S., … Thompson, L. M. (2018). Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice. Stem cell reports, 10(1), 58–72. https://doi.org/10.1016/j.stemcr.2017.11.005
Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N. A., Müller, F. J., Loring, J. F., Yamasaki, T. R., Poon, W. W., Green, K. N., & LaFerla, F. M. (2009). Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13594–13599. https://doi.org/10.1073/pnas.0901402106
Hayashi, Y., Lin, HT., Lee, CC. et al. Effects of neural stem cell transplantation in Alzheimer’s disease models. J Biomed Sci 27, 29 (2020). https://doi.org/10.1186/s12929-020-0622-x
We need to talk about alzheimer's disease. Johns Hopkins Medicine, based in Baltimore, Maryland. (n.d.). Retrieved November 30, 2022, from https://www.hopkinsmedicine.org/research/advancements-in-research/fundamentals/in-depth/we-need-to-talk-about-alzheimers-disease
Published
How to Cite
Issue
Section
Copyright (c) 2023 Yusuf Hussain; Poonam Agarwal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.