3D Bioprinting: Manufacturing the Human Heart
DOI:
https://doi.org/10.47611/jsrhs.v12i1.4062Keywords:
3D Bioprinting, Bioink, Bioprinting Method, CardiologyAbstract
Every day, the organ shortage crisis takes away the lives of 17 patients (Health Resources & Services Administration, 2022). The number of patients who require organ transplants significantly exceeds the number of possible donors, and consequently, most patients pass away while waiting for a matching donor organ. To address this issue, 3D bioprinting was suggested as a method by which patients could receive a functioning replica of their own biocompatible organ. This manuscript will cover in depth the materials—the bioink—and the printing methods that are widely used by various researchers in the bioprinting field. More specifically, this manuscript will analyze and compare natural bioinks—alginate and collagen—and synthetic bioinks—Gelatin methacryloyl and polycaprolactone. It will then introduce the two major bioprinting methods—extrusion-based printing and inkjet-based printing—and analyze the advantages and disadvantages of each method. Finally, the manuscript will highlight the successful applications of 3D bioprinting in cardiology using the aforementioned bioinks and printing methods.
Downloads
References or Bibliography
Aarstad, O., Heggset, E., Pedersen, I., Bjørnøy, S., Syverud, K., & Strand, B. (2017). Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers, 9(12), 378. https://doi.org/10.3390/polym9080378
Albanna, M., Binder, K. W., Murphy, S. V., Kim, J., Qasem, S. A., Zhao, W., Tan, J., El-Amin, I. B., Dice, D. D., Marco, J., Green, J., Xu, T., Skardal, A., Holmes, J. H., Jackson, J. D., Atala, A., & Yoo, J. J. (2019). In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-38366-w
Alonzo, M., AnilKumar, S., Roman, B., Tasnim, N., & Joddar, B. (2019). 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Translational Research, 211, 64–83. https://doi.org/10.1016/j.trsl.2019.04.004
Axpe, E., & Oyen, M. (2016). Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences, 17(12), 1976. https://doi.org/10.3390/ijms17121976
Bahcecioglu, G., Hasirci, N., Bilgen, B., & Hasirci, V. (2019). Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. International Journal of Biological Macromolecules, 122, 1152–1162. https://doi.org/10.1016/j.ijbiomac.2018.09.065
Bejleri, D., Streeter, B. W., Nachlas, A. L., Brown, M. E., Gaetani, R., Christman, K. L., & Davis, M. E. (2018). A bioprinted cardiac patch composed of cardiac‐specific extracellular matrix and progenitor cells for heart repair. Advanced Healthcare Materials, 7(23), 1800672. https://doi.org/10.1002/adhm.201800672
Beyar, R. (2011). Challenges in organ transplantation. Rambam Maimonides Medical Journal, 2(2). https://doi.org/10.5041/rmmj.10049
Blaeser, A., Duarte Campos, D. F., Puster, U., Richtering, W., Stevens, M. M., & Fischer, H. (2015). Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Advanced Healthcare Materials, 5(3), 326–333. https://doi.org/10.1002/adhm.201500677
Caliari, S. R., & Burdick, J. A. (2016). A practical guide to hydrogels for cell culture. Nature Methods, 13(5), 405–414. https://doi.org/10.1038/nmeth.3839
Cascalho, M., & Platt, J. L. (2006). The future of organ replacement: Needs, potential applications, and obstacles to application. Transplantation Proceedings, 38(2), 362–364. https://doi.org/10.1016/j.transproceed.2005.12.055
Celikkin, N., Mastrogiacomo, S., Jaroszewicz, J., Walboomers, X. F., & Swieszkowski, W. (2017). Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Journal of Biomedical Materials Research Part A, 106(1), 201–209. https://doi.org/10.1002/jbm.a.36226
Chen, S. A., Ong, C. S., Malguria, N., Vricella, L. A., Garcia, J. R., & Hibino, N. (2018). Digital design and 3D printing of aortic arch reconstruction in HLHS for surgical simulation and training. World Journal for Pediatric and Congenital Heart Surgery, 9(4), 454–458. https://doi.org/10.1177/2150135118771323
Costello, J. P., Olivieri, L. J., Su, L., Krieger, A., Alfares, F., Thabit, O., Marshall, M. B., Yoo, S.-J., Kim, P. C., Jonas, R. A., & Nath, D. S. (2014). Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenital Heart Disease, 10(2), 185–190. https://doi.org/10.1111/chd.12238
Cui, X., Dean, D., Ruggeri, Z. M., & Boland, T. (2010). Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnology and Bioengineering, 106(6), 963–969. https://doi.org/10.1002/bit.22762
Debiazi Zomer, H., Girardi Gonçalves, A. J., Andrade, J., Benedetti, A., & Gonçalves Trentin, A. (2021). Lack of information about umbilical cord blood banking leads to decreased donation rates among Brazilian pregnant women. Cell and Tissue Banking, 22(4), 597–607. https://doi.org/10.1007/s10561-021-09903-1
Demirci, U., Khademhosseini, A., Hasirci, N., Kilic, C. K., Kömez, A., Bahcecioglu, G. B., & Hasirci, V. (2016). Chapter 1: Hydrogels in regenerative medicine. In Gels Handbook: Fundamentals, properties and applications (Vol. 2, pp. 1–52). essay, World Scientific.
Derakhshanfar, S., Mbeleck, R., Xu, K., Zhang, X., Zhong, W., & Xing, M. (2018). 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials, 3(2), 144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008
Diamantides, N., Wang, L., Pruiksma, T., Siemiatkoski, J., Dugopolski, C., Shortkroff, S., Kennedy, S., & Bonassar, L. J. (2017). Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and ph. Biofabrication, 9(3), 034102. https://doi.org/10.1088/1758-5090/aa780f
Eke, G., Mangir, N., Hasirci, N., MacNeil, S., & Hasirci, V. (2017). Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 129, 188–198. https://doi.org/10.1016/j.biomaterials.2017.03.021
Ekser, B., & Cooper, D. K. C. (2010). Overcoming the barriers to xenotransplantation: Prospects for the future. Expert Review of Clinical Immunology, 6(2), 219–230. https://doi.org/10.1586/eci.09.81
Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., van Blitterswijk, C. A., Schacht, E., Alblas, J., & Dhert, W. J. (2009). Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10(7), 1689–1696. https://doi.org/10.1021/bm801463q
Fu, K., Xu, Q., Czernuszka, J., Triffitt, J. T., & Xia, Z. (2013). Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomedical Materials, 8(6), 065007. https://doi.org/10.1088/1748-6041/8/6/065007
Gao, M., Zhang, H., Dong, W., Bai, J., Gao, B., Xia, D., Feng, B., Chen, M., He, X., Yin, M., Xu, Z., Witman, N., Fu, W., & Zheng, J. (2017). Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05518-3
Gelse, K. (2003). Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546. https://doi.org/10.1016/j.addr.2003.08.002
Ghorbani, F., Moradi, L., Shadmehr, M. B., Bonakdar, S., Droodinia, A., & Safshekan, F. (2017). In-vivo characterization of a 3D hybrid scaffold based on PCL/decellularized aorta for tracheal tissue engineering. Materials Science and Engineering: C, 81, 74–83. https://doi.org/10.1016/j.msec.2017.04.150
Gopinathan, J., & Noh, I. (2018). Recent trends in bioinks for 3D printing. Biomaterials Research, 22(1). https://doi.org/10.1186/s40824-018-0122-1
Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A., & Dokmeci, M. R. (2018). Bioinks for 3D bioprinting: An overview. Biomaterials Science, 6(5), 915–946. https://doi.org/10.1039/c7bm00765e
Guo, T., Holzberg, T. R., Lim, C. G., Gao, F., Gargava, A., Trachtenberg, J. E., Mikos, A. G., & Fisher, J. P. (2017). 3D printing PLGA: A quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication, 9(2), 024101. https://doi.org/10.1088/1758-5090/aa6370
Health Resources & Services Administration. (2022, March). Organ Donation Statistics. OrganDonor.gov. Retrieved November 28, 2022, from https://www.organdonor.gov/learn/organ-donation-statistics
Howard, D., Buttery, L. D., Shakesheff, K. M., & Roberts, S. J. (2008). Tissue engineering: Strategies, stem cells and scaffolds. Journal of Anatomy, 213(1), 66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x
Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Engineering Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346
Kilic Bektas, C., & Hasirci, V. (2020). Cell loaded 3D bioprinted gelma hydrogels for corneal stroma engineering. Biomaterials Science, 8(1), 438–449. https://doi.org/10.1039/c9bm01236b
Kim, J. S., Hong, S., & Hwang, C. (2016). Bio-ink materials for 3D bio-printing. Journal of International Society for Simulation Surgery, 3(2), 49–59. https://doi.org/10.18204/jissis.2016.3.2.049
Kotton, C. N., Kuehnert, M. J., & Fishman, J. A. (2015). Organ transplantation, risks. Reference Module in Biomedical Sciences. https://doi.org/10.1016/b978-0-12-801238-3.02629-5
Kupiec-Weglinski, J. W. (2022). Grand challenges in organ transplantation. Frontiers in Transplantation, 1. https://doi.org/10.3389/frtra.2022.897679
Landers, R., Hübner, U., Schmelzeisen, R., & Mülhaupt, R. (2002). Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23), 4437–4447. https://doi.org/10.1016/s0142-9612(02)00139-4
Lee, A., Hudson, A. R., Shiwarski, D. J., Tashman, J. W., Hinton, T. J., Yerneni, S., Bliley, J. M., Campbell, P. G., & Feinberg, A. W. (2019). 3D bioprinting of collagen to rebuild components of the human heart. Science, 365(6452), 482–487. https://doi.org/10.1126/science.aav9051
Li, X., Liu, B., Pei, B., Chen, J., Zhou, D., Peng, J., Zhang, X., Jia, W., & Xu, T. (2020). Inkjet bioprinting of biomaterials. Chemical Reviews, 120(19), 10793–10833. https://doi.org/10.1021/acs.chemrev.0c00008
Liberski, A. R., Delaney, J. T., & Schubert, U. S. (2010). “One cell−one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science, 13(2), 190–195. https://doi.org/10.1021/co100061c
Manoukian, O. S., Arul, M. R., Sardashti, N., Stedman, T., James, R., Rudraiah, S., & Kumbar, S. G. (2017). Biodegradable polymeric injectable implants for long-term delivery of contraceptive drugs. Journal of Applied Polymer Science, 135(14), 46068. https://doi.org/10.1002/app.46068
Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., & Feinberg, A. W. (2020). Fresh 3D bioprinting a full-size model of the human heart. ACS Biomaterials Science & Engineering, 6(11), 6453–6459. https://doi.org/10.1021/acsbiomaterials.0c01133
Olegovich Osidak, E., Igorevich Kozhukhov, V., Sergeevna Osidak, M., & Petrovich Domogatskiy, S. (2020). Collagen as bioink for bioprinting: A comprehensive review. International Journal of Bioprinting, 6(3). https://doi.org/10.18063/ijb.v6i3.270
Ozbolat, I. T., & Hospodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76, 321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076
Piao, Y., You, H., Xu, T., Bei, H.-P., Piwko, I. Z., Kwan, Y. Y., & Zhao, X. (2021). Biomedical applications of Gelatin methacryloyl hydrogels. Engineered Regeneration, 2, 47–56. https://doi.org/10.1016/j.engreg.2021.03.002
Placone, J. K., & Engler, A. J. (2017). Recent advances in extrusion‐based 3D printing for biomedical applications. Advanced Healthcare Materials, 7(8), 1701161. https://doi.org/10.1002/adhm.201701161
Rabin, R. C. (2022, June 2). Doctors transplant ear of human cells, made by 3-D printer. The New York Times. Retrieved November 25, 2022, from https://www.nytimes.com/2022/06/02/health/ear-transplant-3d-printer.html
Reardon, S. (2022, January 14). First pig-to-human heart transplant: What can scientists learn? Nature News. Retrieved November 25, 2022, from https://www.nature.com/articles/d41586-022-00111-9
Retting, K. N., & Nguyen, D. G. (2018). Additive manufacturing in the development of 3D skin tissues. Skin Tissue Models for Regenerative Medicine, 377–397. https://doi.org/10.1016/b978-0-12-810545-0.00016-4
Rollin, B. E. (2020). Ethical and societal issues occasioned by xenotransplantation. Animals, 10(9), 1695. https://doi.org/10.3390/ani10091695
Romito, A., & Cobellis, G. (2016). Pluripotent stem cells: Current understanding and Future Directions. Stem Cells International, 2016, 1–20. https://doi.org/10.1155/2016/9451492
Schmauss, D., Gerber, N., & Sodian, R. (2013). Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. The Journal of Thoracic and Cardiovascular Surgery, 145(5), 1407–1408. https://doi.org/10.1016/j.jtcvs.2012.12.030
Shah, P. P., Shah, H. B., Maniar, K. K., & Özel, T. (2020). Extrusion-based 3D bioprinting of alginate-based tissue constructs. Procedia CIRP, 95, 143–148. https://doi.org/10.1016/j.procir.2020.06.007
She, Y., Fan, Z., Wang, L., Li, Y., Sun, W., Tang, H., Zhang, L., Wu, L., Zheng, H., & Chen, C. (2021). 3D printed biomimetic PCL scaffold as framework interspersed with collagen for long segment tracheal replacement. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.629796
Sánchez-Cid, P., Jiménez-Rosado, M., Rubio-Valle, J. F., Romero, A., Ostos, F. J., Rafii-El-Idrissi Benhnia, M., & Perez-Puyana, V. (2022). Biocompatible and thermoresistant hydrogels based on collagen and Chitosan. Polymers, 14(2), 272. https://doi.org/10.3390/polym14020272
Townsend, J. M., Ott, L. M., Salash, J. R., Fung, K.-M., Easley, J. T., Seim, H. B., Johnson, J. K., Weatherly, R. A., & Detamore, M. S. (2018). Reinforced electrospun polycaprolactone nanofibers for tracheal repair in an in vivo ovine model. Tissue Engineering Part A, 24(17-18), 1301–1308. https://doi.org/10.1089/ten.tea.2017.0437
Van Den Bulcke, A. I., Bogdanov, B., De Rooze, N., Schacht, E. H., Cornelissen, M., & Berghmans, H. (2000). Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1(1), 31–38. https://doi.org/10.1021/bm990017d
Wang, W., He, W., Ruan, Y., & Geng, Q. (2022). First pig-to-human heart transplantation. The Innovation, 3(2), 100223. https://doi.org/10.1016/j.xinn.2022.100223
Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007
Wang, Z., Wang, L., Li, T., Liu, S., Guo, B., Huang, W., & Wu, Y. (2021). 3D bioprinting in cardiac tissue engineering. Theranostics, 11(16), 7948–7969. https://doi.org/10.7150/thno.61621
Weiss, M. L., & Troyer, D. L. (2006). Stem cells in the umbilical cord. Stem Cell Reviews, 2(2), 155–162. https://doi.org/10.1007/s12015-006-0022-y
Xu, T., Baicu, C., Aho, M., Zile, M., & Boland, T. (2009). Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 1(3), 035001. https://doi.org/10.1088/1758-5082/1/3/035001
Xu, T., Zhao, W., Zhu, J.-M., Albanna, M. Z., Yoo, J. J., & Atala, A. (2013). Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 34(1), 130–139. https://doi.org/10.1016/j.biomaterials.2012.09.035
Xu, Y., Li, Y., Liu, Y., Li, H., Jia, Z., Tang, Y., Jiang, G., Zhang, X., & Duan, L. (2019). Surface modification of decellularized natural cellulose scaffolds with organosilanes for bone tissue regeneration. American Journal of Translational Research, 11(9), 5390–5403. https://doi.org/10.1021/acsbiomaterials.1c01502.s001
Yoon, H., Lee, J.-S., Yim, H., Kim, G., & Chun, W. (2016). Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. RSC Advances, 6(26), 21439–21447. https://doi.org/10.1039/c5ra19532b
Zhu, K., Shin, S. R., van Kempen, T., Li, Y. C., Ponraj, V., Nasajpour, A., Mandla, S., Hu, N., Liu, X., Leijten, J., Lin, Y. D., Hussain, M. A., Zhang, Y. S., Tamayol, A., & Khademhosseini, A. (2017). Gold nanocomposite bioink for printing 3D cardiac constructs. Advanced Functional Materials, 27(12), 1605352. https://doi.org/10.1002/adfm.201605352
Published
How to Cite
Issue
Section
Copyright (c) 2023 Seungbihn Park; Johnathon Talbot
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.