The Applications of Machine Learning in the Study of Liquid Crystals: A Review

Authors

  • Dmitri Kalinin Webb School of Knoxville
  • Jason Abercrombie Webb School of Knoxville

DOI:

https://doi.org/10.47611/jsrhs.v12i1.3983

Keywords:

liquid crystals, machine learning, active nematics, structure-property relationships, topological defects

Abstract

Discovered in the 19th century, liquid crystals have only grown more prominent in the last thirty to forty years as a result of electric fields being able to influence their nematic directors. Since these nematic directors can polarize light, liquid crystals have found extensive uses in the field of optoelectronics, including being in many of the devices (such as computers, phones, and tablets) that we have today. With the continued desire to improve these optoelectronic devices comes the desire to improve the liquid crystal systems that help to compose them. The growth of machine learning technologies has been near the forefront of these efforts to improve the efficiency and effectiveness of the development of these systems. In an effort to recognize this prominence, this article presents a review of machine learning’s presence and use in the study of liquid crystals, as well as a comparison of machine learning techniques and more traditional experimental methods.

Downloads

Download data is not yet available.

References or Bibliography

Abiodun, O. I., Jantan, A., Omolara, A. E., Victoria, K., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: a survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938

Al-Fahemi, J. H. (2014). QSPR study on nematic transition temperatures of thermotropic liquid crystals based on DFT-calculated descriptors. Liquid Crystals, 41(11), 1575-1582. https://doi.org/10.1080/02678292.2014.934310

Antanasijevic, J., Pocajt, V., Antanasijevic, D., Trisovic, N., & Fodor-Csorba, K. (2016). Prediction of clearing temperatures of bent-core liquid crystals using decision trees and multivariate adaptive regression splines. Liquid Crystals, 43(8), 1028-1037. https://doi.org/10.1080/02678292.2016.1155769

Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227. https://arxiv.org/pdf/1511.05741.pdf

Cao, Y., Yu, H., Abbott, N. L., & Zavala, V. M. (2018). Machine learning algorithms for liquid crystal-based sensors. ACS sensors, 3(11), 2237-2245. https://doi.org/10.1021/acssensors.8b00100

Chen, C., Tanaka, K., and Funatsu, K. (2018). Random Forest Model with Combined Features: A practical approach to Predict Liquid-Crystalline Property. Molecular Informatics, 38(4), 1800095. https://doi.org/10.1002/minf.201800095

Chiappini, M., Patti, A., and Dijkstra, M. (2019). Helicoidal dynamics of biaxial curved rods in twist-bend nematic phases unveiled by unsupervised machine learning techniques. Physical Review E, 102(4), 040601. https://doi.org/10.1103/PhysRevE.102.040601

Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and computational harmonic analysis, 21(1), 5-30. https://doi.org/10.1016/j.acha.2005.07.004

Colen, J., Han, M., Zhang, R., Redford, S. A., Lemma, L. M., Morgan, L., … Vitelli, V. (2021). Machine learning active nematic hydrodynamics. Proceedings of the National Academy of Sciences, 118(10), e2016708118. https://doi.org/10.1073/pnas.2016708118

De Gennes, P. G., & Prost, J. (1995). The Physics of Liquid Crystals. Oxford University Press. https://doi.org/10.1063/1.2808028

Dierking, I., & Al-Zangana, S. (2017). Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials, 7(10), 305. https://doi.org/10.3390/nano7100305

Doi, H., Takahasi, K. Z., Tagashira, K., Fukuda, J., and Aoyagi, T. (2019). Machine learning-aided analysis for complex local structure of liquid crystal polymers. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-51238-1

Doostmohammadi, A., Ignes-Mullol, J., Yeomans, J. M., & Sagues, F. (2018). Active nematics. Nature Communications, 9(1), 1-13. https://doi.org/10.1038/s41467-018-05666-8

Duc, T. L., Leiva, R. G., Casari, P., & Östberg, P. O. (2019). Machine learning methods for reliable resource provisioning in edge-cloud computing: A survey. ACM Computing Surveys (CSUR), 52(5), 1-39. https://doi.org/10.1145/3341145

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. https://doi.org/10.1207/s15516709cog1402_1

Fatemi, M. H., and Ghorbandzad’e, M. (2009). In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationships. Molecular Diversity, 13(4), 483-491. https://doi.org/10.1007/s11030-009-9135-y

Gayon-Lombardo, A., Mosser, L., Brandon, N. P., & Cooper, S. J. (2020). Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multiphase electrode microstructures with periodic boundaries. Computational Materials 6(1), 1-11. https://doi.org/10.1038/s41524-020-0340-7

Gong, Z., Zhang, R., Xia, B., Hu, R., Fan, B. (2008). Study of Nematic Transition Temperatures in Thermotropic Liquid Crystal Using Heuristic Method and Radial Basis Function Neural Networks and Support Vector Machine. QSAR & Combinatorial Science, 27(11-12), 1282-1290. https://doi.org/10.1002/qsar.200860027

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative Adversarial Nets. arXiv preprint arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784

Grewal, G. S., Bharara, M., Cobb, J. E., Dubey, V. N., & Claremont, D. J. (2006). A novel approach to thermochromic liquid crystal calibration using neural networks. Measurement Science and Technology, 17(7), 1918. https://doi.org/10.1088/0957-0233/17/7/033

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., … Chen, T. (2017). Recent Advances in Convolutional Neural Networks. Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013

Hedlund, E., Hedlund, K., Green, A., Chowdhury, R., Park, C. S., Maclennan, J. E., & Clark, N. A. (2022). Detection of Islands and Droplets on Smectic Films Using Machine Learning. Physics of Fluids, 34(10), 103608. https://doi.org/10.1063/5.0117358

Inokuchi, T., Okamoto, R., & Arai, N. (2019). Predicting molecular ordering in a binary liquid crystal using machine learning. Liquid Crystals, 47(3), 438-448. https://doi.org/10.1080/02678292.2019.1656293

Ireland, P. T., & Jones, T. V. (2000). Liquid crystal measurements of heat transfer and surface shear stress. Measurement Science and Technology, 11(7), 969. https://doi.org/10.1088/0957-0233/11/7/313

Johnson, S. R., & Jurs, P. C. (1999). Prediction of the Clearing Temperatures in a Series of Liquid Crystals from Molecular Structure. Chemistry of Materials, 11(4), 1007-1023. doi:10.1021/cm980674x

Kawaguchi, K., Kageyama, R., & Sano, M. (2017). Topological defects control collective dynamics in neural progenitor cell cultures. Nature, 545(7654), 327-331. https://doi.org/10.1038/nature22321

Karayiannis, N. B., & Mi, G. W. (1997). Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques. IEEE Transactions on Neural networks, 8(6), 1492-1506. https://doi.org/10.1109/72.641471

Klopp, C. Trittel, T., Eremin, A., Harth, K., Stannarius, R., Park, C. S., … Clark, N. A. (2019). Structure and dynamics of a two-dimensional colloid of liquid droplets. Soft Matter 15(40), 8156-8163. https://doi.org/10.1039/c9sm01433k

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25. https://doi.org/10.1145/3065386

Le, T. C., and Tran, N. (2019). Using Machine Learning to Predict the Self-Assembled Nanostructures of Monoolein and Phytantriol as a Function of Temperature and Fatty Acid Additive for Effective Lipid-Based Delivery Systems. ACS Appl. Nano Mater., 2(3), 1637-1647. https://doi.org/10.1021/acsanm.9b00075

Li, J., Nishikawa, H., Kougo, J., Zhou, J., Dai, S., Tang, W., … Aya, S. (2021). Development of ferroelectric nematic fluids with giant ε dielectricity and nonlinear optical properties. Science Advances, 7(17), eabf5047. https://doi.org/10.1126/sciadv.abf5047

Lisa, C., & Curteanu, S. (2007). Neural Network Based Predictions for the liquid crystal properties of organic compounds. In Computer aided chemical engineering (Vol. 24, pp. 39-44). Elsevier.. https://doi.org/10.1016/S1570-7946(07)80030-7

Liu, Y., Zou, Z., Tsang, A. C. H., Pak, O. S., & Young, Y. N. (2021). Mechanical rotation at low Reynolds number via reinforcement learning. Physics of Fluids, 33(6), 062007. https://doi.org/10.1063/5.0053563

Mani, K., & Kalpana, P. (2016). An Efficient Feature Selection based on Bayes Theorem, Self Information and Sequential Forward Selection. International Journal of Information Engineering & Electronic Business, 8(6). https://doi.org/10.5815/ijieeb.2016.06.06

Marenduzzo, D., Orlandini, E., & Yeomans, J. M. (2007). Hydrodynamics and Rheology of Active Liquid Crystals: A Numerical Investigation. Physical Review Letters, 98(11), 118102. https://doi.org/10.1103/PhysRevLett.98.118102

Mnih, V., Kavukcuoglu, K. Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602. https://doi.org/10.48550/arXiv.1312.5602

Minor, E. N., Howard, S. D., Green, A. A. S., Glaser. M. A., Park, C. S., & Clark, N. A. (2019). End-to-End Machine Learning for Experimental Physics: Using Simulated Data to Train a Neural Network for Object Detection in Video Microscopy. Soft Matter, 16(7), 1751-1759. https://doi.org/10.1039/C9SM01979K

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565-1567. https://doi.org/10.1038/nbt1206-1565

Onsager, L. (1931). Reciprocal relations in irreversible processes. I. Physical Review, 37(4), 405. https://doi.org/10.1103/PhysRev.37.405

Osiecka-Drewniak, N., Czarnecki, M. A., & Galewski, Z. (2021). Investigations of phase transitions in liquid crystal 12BBAA using window clustering of infrared spectra. Journal of Molecular Liquids, 341, 117233. https://doi.org/10.1016/j.molliq.2021.117233

Oswald, P., & Pieranski, P. (2005). Smectic and columnar liquid crystals: concepts and physical properties illustrated by experiments. CRC Press, Boca Raton. https://doi.org/10.1201/9781420036343

Paganini, M., de Oliviera, L, & Nachman, B. (2018). CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks. Physical Review D, 97(1), 014021. https://doi.org/10.1103/PhysRevD.97.014021

Pessa, A. A. B., Zola, R. S., Perc. M., & Ribiero, H.V. (2022). Determining liquid crystal properties with ordinal networks and machine learning. Chaos, Solitons & Fractals, 154, 111607. https://doi.org/10.1016/j.chaos.2021.111607

Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883. https://doi.org/10.4249/scholarpedia.1883

Ren, Y., Zhang, Y., & Yao, X. (2017). QSPRs for estimating nematic transition temperature of pyridine-containing liquid crystalline compounds. Liquid Crystals, 45(2), 238-249. https://doi.org/10.1080/02678292.2017.1314026

Rizkin, B. A., Shkolnik, A. S., Ferraro, N. J., & Hartman, R. L. (2020). Combining automated microfluidic experimentation with machine learning for efficient polymerization design. Nature Machine Intelligence, 2(4), 200-209. https://doi.org/10.1038/s42256-020-0166-5

Rojas, F., & Rutenberg, A. D. (1999). Dynamical scaling: The two-dimensional XY model following a quench. Physical Review E, 60(1), 212. https://doi.org/10.1103/PhysRevE.60.212

Sakanoue, H., Hayashi, Y., & Katayama, K. (2021). Inference of Molecular orientation/ordering change nearby topological defects by the neural network function from the microscopic color information. Scientific Reports, 11(1), 1-10. https://doi.org/10.1038/s41598-021-88535-7

Shah, R. R., & Abbott, N. L. (2001). Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science, 293(5533), 1296-1299. https://doi.org/10.1126/science.1062293

Sigaki, H. Y. D., de Souza, R. F., de Souza, R. T., Zola, R. S., & Ribiero, H. V. (2019). Estimating physical properties from liquid crystal texture via machine learning and complexity-entropy methods. Physical Review E, 99(1), 013311. https://doi.org/10.1103/PhysRevE.99.013311

Sigaki, H. Y. D., Lenzi, E. K., Zola, R. S., Perc, M., and Ribiero, H. V. (2020). Learning physical properties of liquid crystals with deep convolutional neural networks. Scientific Reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-63662-9

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556

Smith, A. D., Abbot, N., & Zavala, V. M. (2020). Convolutional Network Analysis of Optical Micrographs for Liquid Crystal Sensors. Journal of Physical Chemistry C, 124(28), 15152-15161. https://doi.org/10.1021/acs.jpcc.0c01942

Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130. https://doi.org/10.11919%2Fj.issn.1002-0829.215044

Sutton, P., & Boyden, S. (1994). Genetic Algorithms: A general search procedure. American Journal of Physics, 62(6), 549-552. https://doi.org/10.1119/1.17516

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press. https://doi.org/10.1017/s0263574799271172

Takashi, K. Z., Aoyagi, T., & Fukuda, J. (2021). Multistep nucleation of anisotropic molecules. Nature Communications, 12(1), 1-9. https://doi.org/10.1038/s41467-021-25586-4

Tan, A. J., Roberts, E., Smith, S. A., Olvera, U. A., Arteaga, J., Fortini, S., … Hirst, L. S. (2019). Topological chaos in active nematics. Nature Physics, 15(10), 1033-1039. https://doi.org/10.1038/s41567-019-0600-y

Trafalis, T. B., & Ince, H. (2000). Support Vector Machine for Regression and Applications to Financial Forecasting. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 6, pp. 348-353). IEEE. https://doi.org/10.1109/IJCNN.2000.859420

Vill, V. (1995). Conception and Realization of a Liquid Crystal Database LIQCRYST. Liquid Crystals Today, 5(3), 6-7. https://doi.org/10.1080/13583149508047608

Villanueva-Garcia, M., Gutierrez-Parra, R. N., Martinez-Richa, A., & Robles, J. (2005). Quantitative structure-property relationships to estimate nematic transition temperatures in thermotropic liquid crystals. Journal of Molecular Structure: THEOCHEM, 727(1-3), 63-69. https://doi.org/10.1016/j.theochem.2005.02.033

Walters, M., Wei, Q., & Chen, J. Z. Y. (2019). Machine learning topological defects of confined liquid crystals in two dimensions. Physical Review E, 99(6), 062701. https://doi.org/10.1103/PhysRevE.99.062701

Wenzel, D., Nestler, M., Reuther, S., Simon, M., and Voigt, A. (2020). Defects in active nematics - algorithms for identification and tracking. Computational Methods in Applied Mathematics, 21(3), 683-692. https://doi.org/10.1515/cmam-2020-0021

Xu, J., Wang, L., Zhang, H., Yi, C., & Xu, W. (2010). Accurate quantitative structure-property relationship analysis for prediction of nematic transition temperatures in thermotropic liquid crystals. Molecular Simulation, 36(1), 26-34. https://doi.org/10.1080/08927020903096064

Xu, Y., Rather, A. M., Song, S., Fang, J. C., Dupont, R. L., Kara, U. I., ... & Wang, X. (2020). Ultrasensitive and selective detection of SARS-CoV-2 using thermotropic liquid crystals and image-based machine learning. Cell Reports Physical Science, 1(12), 100276. https://doi.org/10.1016/j.xcrp.2020.100276

Yang, S., & Collings, P. J. (2020). The Genetic Algorithm: Using Biology to Compute Liquid Crystal Director Configurations. Crystals, 10(11), 1041. https://doi.org/10.3390/cryst1011104

Yang, X., Li, J., Forest, M. G., & Wang, Q. (2016). Hydrodynamic theories for flows of active liquid crystals and the generalized onsager principle. Entropy, 18(6), 202. https://doi.org/10.3390/e18060202

Yurke, B., Pargellis, A. N., Majumdar, S. N., & Sire, C. (1997). "Experimental measurement of the persistence exponent of the planar Ising model." Physical Review E, 56(1), R40. https://doi.org/10.1103/PhysRevE.56.R40

Zhang, J., Yang, J., Zhang, Y., & Bevan, M. A. (2020). Controlling colloidal crystals via morphing energy landscapes and machine learning. Science Advances, 6(48), eabd6716. https://doi.org/10.1126/sciadv.abd6716

Zhao, J., Zhang, J., and Wang, B. (2022). A learning-based approach for solving shear-stress vector distribution from shear-sensitive liquid crystal coating images. Chinese Journal of Aeronautics, 35(4), 55-65. https://doi.org/10.1016/j.cja.2021.04.019

Zhou, Z., Joshi, C., Liu, R., Norton, M. M., Lemma, L., Dogic, Z., … Hong, P. (2021). Machine Learning Forecasting of Active Nematics. Soft Matter, 17(3), 738-747. https://doi.org/10.1039/D0SM01316A

Published

02-28-2023

How to Cite

Kalinin, D., & Abercrombie, J. (2023). The Applications of Machine Learning in the Study of Liquid Crystals: A Review. Journal of Student Research, 12(1). https://doi.org/10.47611/jsrhs.v12i1.3983

Issue

Section

HS Review Articles