Proofreading Function and Mutations in SARS-CoV-2 and their Impact on Viral Infectivity

Authors

  • Tiffany Lin Dulwich College Suzhou
  • Lauren Sundby

DOI:

https://doi.org/10.47611/jsrhs.v12i1.3906

Keywords:

SARS-CoV-2, Viral infectivity, Proofreading mechnism, Mutations, Virus

Abstract

SARS-CoV-2 is a positive-sense single-stranded RNA virus that causes the respiratory disease, COVID-19 (coronavirus disease 19) and is a member of the severe acute respiratory syndrome-related coronavirus species in the Coronaviridae family. The virus has led to more than 590 million infections and more than 6.4 million deaths worldwide as of end of August, 2022. The coronavirus family also includes SARS-CoV, which is the virus that led to the 2003 SARS epidemic, affecting 26 countries at the time. Mutations in SARS-CoV-2 have accumulated since the emergence of the virus in 2019, and new variants are increasingly observed. SARS-CoV-2 has a unique proofreading function that has shown to be carried out by a protein complex that corrects mismatched base pairs during replication. This paper aims to address the degree that the SARS-CoV-2’s proofreading mechanism results in fewer protein mutations in its spike glycoprotein compared to other viruses. The proofreading function limits the number of mutations that survive RNA replication for the SARS-CoV-2 virus. Examining the proofreading function of the SARS-CoV-2 virus will reveal important insights into its mutation rates and changes in viral infectivity, suggesting pathways for treatments in the future.

Downloads

Download data is not yet available.

References or Bibliography

Alex, S. (2022, June 7). Omicron lineage spike proteins use ACE2 receptors more efficiently. News-Medical.

Amicone, M., Borges, V., Alves, M. J., Isidro, J., Zé-Zé, L., Duarte, S., Vieira, L., Guiomar, R., Gomes, J. P., & Gordo, I. (2022). Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evolution, Medicine and Public Health, 10(1), 142–155. https://doi.org/10.1093/emph/eoac010

Bálint, G., Vörös-Horváth, B., & Széchenyi. (2022). Omicron: increased transmissibility and decreased pathogenicity. Nature, 151(7).

Barr, J., & Fearns, R. (2022, August 18). RNA virus. Wikipedia.

Biology Dictionary. (2017, April 28). Mutation. Biology Dictionary.

Bouvet, M., Ferron, F., Imbert, I., Gluais, L., Selisko, B., Coutard, B., Canard, B., & Decroly, E. (2012). Stratégies de formation de la structure coiffe chez les virus à ARN. In Medecine/Sciences (Vol. 28, Issue 4, pp. 423–429). https://doi.org/10.1051/medsci/2012284021

Brenza, A. (2020, April 9). Nearly 90% of People Hospitalized for COVID-19 Have Underlying Conditions, Says CDC. Health.

Britannica. (2021). Size and shape. Britannica.

CDC. (2021, November 4). COVID-19. CDC Centers for Disease Control and Prevention.

Cuffari, B. (2021). What is a Pseudovirus? News-Medical.

Czarna, A., Plewka, J., Kresik, L., Matsuda, A., Karim, A., Robinson, C., O’Byrne, S., Cunningham, F., Georgiou, I., Wilk, P., Pachota, M., Popowicz, G., Wyatt, P. G., Dubin, G., & Pyrć, K. (2022). Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Structure, 30(8), 1050-1054.e2. https://doi.org/10.1016/j.str.2022.04.014

DAV. (2020). DNA proofreading and repair.

Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D., & Baric, R. S. (2011). Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biology, 8(2), 270—279. https://doi.org/10.4161/rna.8.2.15013

Dey, A. (2022). Errors In DNA Replication: 13 Facts Most Beginners Don’t Know. Lambda Geeks.

Dutta, S. (2021). D614G Mutation in SARS-CoV-2 Spike Protein. News-Medical.

Flerlage, T., Boyd, D. F., Meliopoulos, V., Thomas, P. G., & Schultz-Cherry, S. (2021). Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. In Nature Reviews Microbiology (Vol. 19, Issue 7, pp. 425–441). Nature Research. https://doi.org/10.1038/s41579-021-00542-7

Gobeil, S., Henderson, R., & Stalls, V. (2022). Structural diversity of the SARS-CoV-2 Omicron spike. NIH.

Goldhawk, B. (2021, December 23). World’s first molecular-level analysis of omicron variant spike protein. MedicalXpress.

Hong, Z., Jiang, J., Hashiguchi, K., Hoshi, M., Lan, L., & Yasui, A. (2008). Recruitment of mismatch repair proteins to the site of DNA damage in human cells. Journal of Cell Science, 121(19).

InvivoGen. (2022). SARS-CoV-2 Structural Genes. InvivoGen.

Krug, R. (2022, August 22). What is a virus? Britannica.

Lakna. (2017, December 6). Difference Between DNA and RNA Viruses. PEDIAA.

Leung, N. H. L. (2021). Transmissibility and transmission of respiratory viruses. In Nature Reviews Microbiology (Vol. 19, Issue 8, pp. 528–545). Nature Research. https://doi.org/10.1038/s41579-021-00535-6

Lin, L., Wang, Y., Li, Q., Hu, M., & Shi, Y. (2022). Novel SARS-CoV-2 therapeutic targets: RNA proofreading complex and virus-induced senescence. In Cell Death and Differentiation (Vol. 29, Issue 2, pp. 263–265). Springer Nature. https://doi.org/10.1038/s41418-021-00909-6

Lu, S. (2020). NSP10. NCBI.

Ma, Z., Pourfarjam, Y., & Kim, I. K. (2021). Reconstitution and functional characterization of SARS-CoV-2 proofreading complex. Protein Expression and Purification, 185. https://doi.org/10.1016/j.pep.2021.105894

Magazine, N., Zhang, T., Wu, Y., McGee, M. C., Veggiani, G., & Huang, W. (2022). Mutations and Evolution of the SARS‐CoV‐2 Spike Protein. In Viruses (Vol. 14, Issue 3). MDPI. https://doi.org/10.3390/v14030640

Manzanares-Meza, L. D., & Medina-Contreras, O. (2020). SARS-CoV-2 and influenza: a comparative overview and treatment implications. NIH, 77(5).

Marcos, T. (2022). Replication Race: Scientists unravel why Omicron spreads faster. Proteintech.

National Institutes of Health. (2022, September 9). COVID-19 Vaccines. NIH Covid-19 Research.

NHS. (2019, October 24). SARS (severe acute respiratory syndrome). NHS.

Nobusawa, E., & Sato, K. (2006). Comparison of the Mutation Rates of Human Influenza A and B Viruses. Journal of Virology, 80(7), 3675–3678. https://doi.org/10.1128/jvi.80.7.3675-3678.2006

Open Access Government. (2021, February 18). The spike mutation makes COVID eight times more infectious. Open Access Government.

OxfordLanguages. (2022). Transmissibility. Oxford Dictionary.

Riccio, A. A., Sullivan, E. D., & Copeland, W. C. (2022). Activation of the SARS-CoV-2 NSP14 3’-5’ exoribonuclease by NSP10 and response to antiviral inhibitors. Journal of Biological Chemistry, 298(1). https://doi.org/10.1016/j.jbc.2021.101518

Robertson, S. (2022, February 13). What is a Virus? News-Medical.

Rodríguez, L., Kovac, & Hernández. (2013). Virus Infectivity. Science Direct.

Rona, G., Zeke, A., Miwatani-Minter, B., de Vries, M., Kaur, R., Schinlever, A., Garcia, S. F., Goldberg, H. v., Wang, H., Hinds, T. R., Bailly, F., Zheng, N., Cotelle, P., Desmaële, D., Landau, N. R., Dittmann, M., & Pagano, M. (2022). The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death and Differentiation, 29(2), 285–292. https://doi.org/10.1038/s41418-021-00900-1

Sobhanie, M. (2021, December 14). How do virus mutations happen, and what do they mean? Wexnermedical.

Spencer, J. A., Shutt, D. P., Moser, S. K., Clegg, H., Wearing, H. J., Mukundan, H., & Manore, C. A. (2020). Epidemiological parameter review and comparative dynamics of influenza, respiratory syncytial virus, rhinovirus, human coronavirus, and adenovirus. https://doi.org/10.1101/2020.02.04.20020404

Tapparel, C., Cordey, S., Junier, T., Farinelli, L., van Belle, S., Soccal, P. M., Aubert, J. D., Zdobnov, E., & Kaiser, L. (2011). Rhinovirus Genome Variation during Chronic Upper and Lower Respiratory Tract Infections. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0021163

Tatomir, J. (2022, February 12). DNA Mutations vs. RNA Mutations: What is a Mutation in DNA. Study.Com.

U.S. National Library of Medicine. (2022). Base Pair Mismatch. U.S. National Library of Medicine.

Waman, V. P., Kolekar, P. S., Kale, M. M., & Kulkarni-Kale, U. (2014). Population Structure and Evolution of Rhinoviruses. Plos One.

WHO. (2014, March 4). How pandemic influenza emerges. WHO.

WHO. (2021, June 14). Coronavirus disease (COVID-19). WHO (World Health Organization).

WHO. (2022, July). Middle East respiratory syndrome. WHO EMRO.

Worldometer. (2022, September 12). Countries where COVID-19 has spread. Worldometer.

Zhang, J., Xiao, T., Cai, Y., & Chen, B. (2021). Structure of SARS-CoV-2 spike protein. In Current Opinion in Virology (Vol. 50, pp. 173–182). Elsevier B.V. https://doi.org/10.1016/j.coviro.2021.08.010

Published

02-28-2023

How to Cite

Lin, T., & Sundby, L. (2023). Proofreading Function and Mutations in SARS-CoV-2 and their Impact on Viral Infectivity. Journal of Student Research, 12(1). https://doi.org/10.47611/jsrhs.v12i1.3906

Issue

Section

HS Review Articles