Investigating the Role of Prescription Drugs on the Gut Microbiome

Authors

  • Joseph Li Amador Valley High School
  • Heather Murdoch Michigan State University

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3841

Keywords:

microbiology, opioids, antidepressants, marijuana, antimicrobial

Abstract

The effect of prescription drugs on gut microbiome is a relevant and under-researched issue in the modern medicine-dependent world. The gut plays an important role in body function, and dysbiosis can influence the development of conditions such as obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, allergic reactions and many other human diseases. In this study we systematically organize and compare different commonly used prescription drugs. Studies based on murine and human subjects were analyzed on each of the three following classes: opioids, antidepressants, and marijuana to understand the role that these play on the microbiome. Opioids and antidepressants were shown to significantly change and modulate the microbial composition found in the gut that is associated with disease. Marijuana demonstrated the most conflicting results out of all three classes and needs further investigation. This information is significant for patients that are currently using these drugs as well as physicians to understand the role that these drugs play inadvertently, and to inform physicians to be more cautious when prescribing these drugs.

Downloads

Download data is not yet available.

References or Bibliography

Acharya, C., Betrapally, N.S., Gillevet, P.M., Sterling, R.K., Akbarali, H., White, M.B., Ganapathy, D., Fagan, A., Sikaroodi, M. and Bajaj, J.S. (2017), Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Aliment Pharmacol Ther, 45: 319-331. https://doi.org/10.1111/apt.13858

Ait Chait, Y., Mottawea, W., Tompkins, T.A. et al. Unravelling the antimicrobial action of antidepressants on gut commensal microbes. Sci Rep 10, 17878 (2020). https://doi.org/10.1038/s41598-020-74934-9

Akbarali, H. I., & Dewey, W. L. (2017). The gut–brain interaction in opioid tolerance. Current Opinion in Pharmacology, 37, 126–130. https://doi.org/10.1016/j.coph.2017.10.012

Al-Ghezi, Z. Z., Busbee, P. B., Alghetaa, H., Nagarkatti, P. S., & Nagarkatti, M. (2019). Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain, Behavior, and Immunity, 82, 25–35.

https://doi.org/10.1016/j.bbi.2019.07.028

Aydin, S., Ozkul, C., Yucel, N. T., & Karaca, H. (2021). Gut Microbiome Alteration after Reboxetine Administration in Type-1 Diabetic Rats. Microorganisms, 9(9), 1948. https://doi.org/10.3390/microorganisms9091948

Banerjee, S., Sindberg, G., Wang, F., Meng, J., Sharma, U., Zhang, L., Dauer, P., Chen, C., Dalluge, J., Johnson, T., & Roy, S. (2016). Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal immunology, 9(6), 1418–1428. https://doi.org/10.1038/mi.2016.9

Bull, M. J., & Plummer, N. T. (2014). Part 1: The Human Gut Microbiome in Health and Disease. Integrative medicine (Encinitas, Calif.), 13(6), 17–22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566439/

Cai, X., Deng, L., Ma, X. et al. Altered diversity and composition of gut microbiota in Wilson's disease. Sci Rep 10, 21825 (2020). https://doi.org/10.1038/s41598-020-78988-7

Chhabra, N., Aseri, M. L., & Padmanabhan, D. (2013). A review of drug isomerism and its significance.

International journal of applied & basic medical research, 3(1), 16–18. https://doi.org/10.4103/2229-516X.112233

Chong, P. P., Chin, V. K., Looi, C. Y., Wong, W. F., Madhavan, P., & Yong, V. C. (2019). The Microbiome and Irritable Bowel Syndrome - A Review on the Pathophysiology, Current Research and Future Therapy. Frontiers in microbiology, 10, 1136. https://doi.org/10.3389/fmicb.2019.01136

Delmée, M. (2021). Clostridium difficile: Bacteria that can infect people taking antibiotics. Frontiers for Young Minds, 9. https://doi.org/10.3389/frym.2021.587832

Derrien, M., Turroni, F., Ventura, M., & van Sinderen, D. (2022). Insights into endogenous bifidobacterium species in the human gut microbiota during adulthood. Trends in Microbiology, 30(10), 940–947.

https://doi.org/10.1016/j.tim.2022.04.004

Di Domenico, E. G., Cavallo, I., Capitanio, B., Ascenzioni, F., Pimpinelli, F., Morrone, A., & Ensoli, F. (2019).

Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms, 7(9), 301. https://doi.org/10.3390/microorganisms7090301

Duan, R., Zhu, S., Wang, B., & Duan, L. (2019). Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review. Clinical and translational gastroenterology, 10(2), e00012. https://doi.org/10.14309/ctg.0000000000000012

Elflein, J. (2020, July 17). Antidepressant use by state U.S. 2019. Statista. Retrieved September 25, 2022, from https://www.statista.com/statistics/1133632/antidepressant-use-by-state-us/

Fuks, G., Elgart, M., Amir, A. et al. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbiome 6, 17 (2018). https://doi.org/10.1186/s40168-017-0396-x

Gorelick, J., Assa-Glazer, T., Zandani, G., Altberg, A., Sela, N., Nyska, A., & Madar, Z. (2022). THC and CBD affect metabolic syndrome parameters including microbiome in mice fed high fat-cholesterol diet. Journal of Cannabis Research, 4(1). https://doi.org/10.1186/s42238-022-00137-w

Guo, P., Zhang, K., Ma, X. et al. Clostridium species as probiotics: potentials and challenges. J Animal Sci Biotechnol 11, 24 (2020). https://doi.org/10.1186/s40104-019-0402-1

Hiippala, K., Kainulainen, V., Kalliomäki, M., Arkkila, P., & Satokari, R. (2016). Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. Frontiers in microbiology, 7, 1706. https://doi.org/10.3389/fmicb.2016.01706

Hills, R. D., Jr, Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 11(7), 1613. https://doi.org/10.3390/nu11071613

Iquebal, M. A., Jaiswal, S., Mishra, V. K., Jasrotia, R. S., Angadi, U. B., Singh, B. P., Passari, A. K., Deka, P.,

Prabha, R., Singh, D. P., Gupta, V. K., Tomar, R. S., Oberoi, H. S., Rai, A., & Kumar, D. (2021). Fungal Genomic Resources for Strain Identification and Diversity Analysis of 1900 Fungal Species. Journal of fungi (Basel, Switzerland), 7(4), 288. https://doi.org/10.3390/jof7040288

Ju, T., Kong, J.Y., Stothard, P. et al. Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J 13, 1520–1534 (2019). https://doi.org/10.1038/s41396-019-0364-5

Juergens, J. (2022, April 14). Morphine addiction and abuse. Addiction Center. Retrieved September 25, 2022, from https://www.addictioncenter.com/opiates/morphine/

Jungersen, M., Wind, A., Johansen, E., Christensen, J. E., Stuer-Lauridsen, B., & Eskesen, D. (2014). The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms, 2(2), 92–110. https://doi.org/10.3390/microorganisms2020092

Kaakoush, N. O. (2015). Insights into the role of Erysipelotrichaceae in the human host. Frontiers in Cellular and Infection Microbiology, 5. https://doi.org/10.3389/fcimb.2015.00084

Kaper, J., Nataro, J. & Mobley, H. Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–140 (2004). https://doi.org/10.1038/nrmicro818

Keisuke Nakajima, Yoshio Yaoita, Construction of multiple-epitope tag sequence by PCR for sensitive Western blot analysis, Nucleic Acids Research, Volume 25, Issue 11, 1 June 1997, Pages 2231–2232, https://doi.org/10.1093/nar/25.11.2231

La Reau, A.J., Suen, G. The Ruminococci: key symbionts of the gut ecosystem. J Microbiol. 56, 199–208 (2018). https://doi.org/10.1007/s12275-018-8024-4

Lee, N. K., Kim, W. S., & Paik, H. D. (2019). Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food science and biotechnology, 28(5), 1297–1305. https://doi.org/10.1007/s10068-019-00691-9

Long, X., Wong, C.C., Tong, L. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol 4, 2319–2330 (2019). https://doi.org/10.1038/s41564-019-0541-3

Lopetuso, L.R., Scaldaferri, F., Petito, V. et al. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5, 23 (2013). https://doi.org/10.1186/1757-4749-5-23

Luketic, V. A., & Sanyal, A. J. (1994). The current status of ursodeoxycholate in the treatment of chronic cholestatic liver disease. The Gastroenterologist, 2(1), 74–79. https://pubmed.ncbi.nlm.nih.gov/8055235/

Lukić, I., Getselter, D., Ziv, O. et al. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry 9, 133 (2019). https://doi.org/10.1038/s41398-019-0466-x

Macedo, D., Filho, A. J., Soares de Sousa, C. N., Quevedo, J., Barichello, T., Júnior, H. V., & Freitas de Lucena, D. (2017). Antidepressants, antimicrobials or both? gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. Journal of Affective Disorders, 208, 22–32. https://doi.org/10.1016/j.jad.2016.09.012

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474

McGovern, A. S., Hamlin, A. S., & Winter, G. (2019). A review of the antimicrobial side of antidepressants and its putative implications on the gut microbiome. Australian & New Zealand Journal of Psychiatry, 53(12), 1151–1166.

https://doi.org/10.1177/0004867419877954

Menees, S., & Chey, W. (2018). The gut microbiome and irritable bowel syndrome. F1000Research, 7, F1000 Faculty Rev-1029. https://doi.org/10.12688/f1000research.14592.1

Moon, C. D., Young, W., Maclean, P. H., Cookson, A. L., & Bermingham, E. N. (2018). Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen, 7(5), e00677. https://doi.org/10.1002/mbo3.677

Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in Human Health and Diseases. Frontiers in microbiology, 9, 757. https://doi.org/10.3389/fmicb.2018.00757

Nava, G. M., & Stappenbeck, T. S. (2011). Diversity of the autochthonous colonic microbiota. Gut microbes, 2(2), 99–104. https://doi.org/10.4161/gmic.2.2.15416

O'Callaghan, A., & van Sinderen, D. (2016). Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Frontiers in microbiology, 7, 925. https://doi.org/10.3389/fmicb.2016.00925

Oscarsson, E., Håkansson, Å., Andrén Aronsson, C., Molin, G., & Agardh, D. (2021). Effects of Probiotic Bacteria

Lactobacillaceae on the Gut Microbiota in Children With Celiac Disease Autoimmunity: A Placebo-Controlled and Randomized Clinical Trial. Frontiers in nutrition, 8, 680771. https://doi.org/10.3389/fnut.2021.680771

Ren, M., & Lotfipour, S. (2020). The role of the gut microbiome in opioid use. Behavioural pharmacology, 31(2&3), 113–121. https://doi.org/10.1097/FBP.0000000000000538

Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. (2017). Proteobacteria: A Common Factor in Human Diseases. BioMed research international, 2017, 9351507. https://doi.org/10.1155/2017/9351507

Rosenthal, M. S., & Pipitone, R. N. (2020). Demographics, perceptions, and use of medical marijuana among patients in Florida. Medical Cannabis and Cannabinoids, 4(1), 13–20. https://doi.org/10.1159/000512342

Shen, J., Zhang, B., Wei, G., Pang, X., Wei, H., Li, M., Zhang, Y., Jia, W., & Zhao, L. (2006). Molecular Profiling of the Clostridium leptum Subgroup in Human Fecal Microflora by PCR-Denaturing Gradient Gel Electrophoresis and Clone Library Analysis. Applied and Environmental Microbiology, 72(8), 5232–5238.

https://doi.org/10.1128/aem.00151-06

Silvestri, C., Pagano, E., Lacroix, S., Venneri, T., Cristiano, C., Calignano, A., Parisi, O. A., Izzo, A. A., Di Marzo, V., & Borrelli, F. (2020). Fish oil, cannabidiol and the gut microbiota: An investigation in a murine model of colitis. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.585096

Tajiri, K., & Shimizu, Y. (2013). Branched-chain amino acids in liver diseases. World journal of gastroenterology, 19(43), 7620–7629. https://doi.org/10.3748/wjg.v19.i43.7620

Tiew, P.Y., Mac Aogain, M., Ali, N.A.B.M. et al. The Mycobiome in Health and Disease: Emerging Concepts,

Methodologies and Challenges. Mycopathologia185, 207–231 (2020). https://doi.org/10.1007/s11046-019-00413-z

Torres-Miranda, A., Vega-Sagardía, M., & Garrido, D. (2022). Probiotics, microbiome and the concept of cross-feeding. Comprehensive Gut Microbiota, 199–220. https://doi.org/10.1016/b978-0-12-819265-8.00055-3

Vacca, M., Celano, G., Calabrese, F. M., Portincasa, P., Gobbetti, M., & De Angelis, M. (2020). The Controversial

Role of Human Gut Lachnospiraceae. Microorganisms, 8(4), 573. https://doi.org/10.3390/microorganisms8040573

Vals-Delgado, C., Alcala-Diaz, J. F., Molina-Abril, H., Roncero-Ramos, I., Caspers, M. P. M., Schuren, F. H. J., Van den Broek, T. J., Luque, R., Perez-Martinez, P., Katsiki, N., Delgado-Lista, J., Ordovas, J. M., van Ommen, B., Camargo, A., & Lopez-Miranda, J. (2022). An altered microbiota pattern precedes type 2 diabetes mellitus development: From the CORDIOPREV Study. Journal of Advanced Research, 35, 99–108. https://doi.org/10.1016/j.jare.2021.05.001

Van Syoc, E., Rogers, C.J. and Ganda, E. (2022), Global metagenomics analyses demonstrate metformin-induced changes in the gut mycobiome in subjects with type 2 diabetes. The FASEB Journal, 36:. https://doi.org/10.1096/fasebj.2022.36.S1.R4993

Wang, F., Meng, J., Zhang, L. et al. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep 8, 3596 (2018). https://doi.org/10.1038/s41598-018-21915-8

Waśkiewicz, A., & Irzykowska, L. (2014). Flavobacterium spp. – characteristics, occurrence, and toxicity. Encyclopedia of Food Microbiology, 938–942. https://doi.org/10.1016/b978-0-12-384730-0.00126-9

Wentworth, J. M., Naselli, G., Ngui, K., Smyth, G. K., Liu, R., O'Brien, P. E., Bruce, C., Weir, J., Cinel, M., Meikle, P. J., & Harrison, L. C. (2016). GM3 ganglioside and phosphatidylethanolamine-containing lipids are adipose tissue markers of insulin resistance in obese women. International journal of obesity (2005), 40(4), 706–713.

https://doi.org/10.1038/ijo.2015.223

Wilson, M. G., & Pandey, S. (2022). Pseudomonas Aeruginosa. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557831/

Zhou K. (2017). Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. Journal of functional foods, 33, 194–201.

https://doi.org/10.1016/j.jff.2017.03.045

Published

11-30-2022

How to Cite

Li, J., & Murdoch, H. (2022). Investigating the Role of Prescription Drugs on the Gut Microbiome. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3841

Issue

Section

HS Review Articles