Mechanisms Behind Hypoxia-Driven Resistance to Immunotherapy in the Tumor Microenvironment
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3837Keywords:
Hypoxia, Tumor Microenvironment, CAR-T Cells, Immune Checkpoint Blockade, HIF-1a, In-SilicoAbstract
Tumor formation requires rapid proliferation of malignant cells which consume large amounts of oxygen from the microenvironment to meet metabolic demands. The resulting tumor microenvironment (TME) is usually low in oxygen compared to healthy tissue and left in a hypoxic state. Immune cells in the tissue rely on oxygen for energy production, therefore immune function is often inhibited in the TME. Novel immunotherapy treatments aim to reinvigorate the immune system, thus making hypoxia a concrete barrier against immunotherapeutics targeting solid tumors. Furthermore, oxygen levels are highly variable dependent on the tissue, raising the question of the influence of physoxia on immune cell survival in hypoxic counterparts. This review aims to provide insight into the mechanisms that influence this question, using an in-silico approach, in order to understand how the field can improve immunotherapy treatments for patients.
Downloads
References or Bibliography
Abbas, S. Z., Qadir, M. I., & Muhammad, S. A. (2020). Systems-level differential gene expression analysis reveals new genetic variants of oral cancer. Scientific Reports, 10(1), 14667. https://doi.org/10.1038/s41598-020-71346-7
Ai, L., Xu, A., & Xu, J. (2020). Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. Advances in Experimental Medicine and Biology, 1248, 33–59. https://doi.org/10.1007/978-981-15-3266-5_3
Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., Carbone, D. P., & Gabrilovich, D. I. (2001). Increased Production of Immature Myeloid Cells in Cancer Patients: A Mechanism of Immunosuppression in Cancer. The Journal of Immunology, 166(1), 678–689. https://doi.org/10.4049/jimmunol.166.1.678
Andrews, L. P., Marciscano, A. E., Drake, C. G., & Vignali, D. A. A. (2017). LAG3 (CD223) as a cancer immunotherapy target. Immunological Reviews, 276(1), 80–96. https://doi.org/10.1111/imr.12519
Anjum, A., Jaggi, S., Varghese, E., Lall, S., Bhowmik, A., & Rai, A. (2016). Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 23(4), 239–247. https://doi.org/10.1089/cmb.2015.0205
Atkuri, K. R., Herzenberg, L. A., & Herzenberg, L. A. (2005). Culturing at atmospheric oxygen levels impacts lymphocyte function. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3756–3759. https://doi.org/10.1073/pnas.0409910102
Atkuri, K. R., Herzenberg, L. A., Niemi, A.-K., Cowan, T., & Herzenberg, L. A. (2007). Importance of culturing primary lymphocytes at physiological oxygen levels. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4547–4552. https://doi.org/10.1073/pnas.0611732104
Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T., & Zare, P. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 18(1), 59. https://doi.org/10.1186/s12964-020-0530-4
Bettini, M., Castellaw, A. H., Lennon, G. P., Burton, A. R., & Vignali, D. A. A. (2012). Prevention of autoimmune diabetes by ectopic pancreatic β-cell expression of interleukin-35. Diabetes, 61(6), 1519–1526. https://doi.org/10.2337/db11-0784
Bridgeman, J. S., Ladell, K., Sheard, V. E., Miners, K., Hawkins, R. E., Price, D. A., & Gilham, D. E. (2014). CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: Implications for optimization of receptor structure for adoptive cell therapy. Clinical and Experimental Immunology, 175(2), 258–267. https://doi.org/10.1111/cei.12216
Bronte, V., Wang, M., Overwijk, W. W., Surman, D. R., Pericle, F., Rosenberg, S. A., & Restifo, N. P. (1998). Apoptotic death of CD8+ T lymphocytes after immunization: Induction of a suppressive population of Mac-1+/Gr-1+ cells. Journal of Immunology (Baltimore, Md.: 1950), 161(10), 5313–5320.
Busse, D., de la Rosa, M., Hobiger, K., Thurley, K., Flossdorf, M., Scheffold, A., & Höfer, T. (2010). Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3058–3063. https://doi.org/10.1073/pnas.0812851107
Caldwell, C. C., Kojima, H., Lukashev, D., Armstrong, J., Farber, M., Apasov, S. G., & Sitkovsky, M. V. (2001). Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. Journal of Immunology (Baltimore, Md.: 1950), 167(11), 6140–6149. https://doi.org/10.4049/jimmunol.167.11.6140
Caruso, A. M., Serbina, N., Klein, E., Triebold, K., Bloom, B. R., & Flynn, J. L. (1999). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. Journal of Immunology (Baltimore, Md.: 1950), 162(9), 5407–5416. https://pubmed.ncbi.nlm.nih.gov/10228018/
Cheah, M. T., Chen, J. Y., Sahoo, D., Contreras-Trujillo, H., Volkmer, A. K., Scheeren, F. A., Volkmer, J.-P., & Weissman, I. L. (2015). CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4725–4730. https://doi.org/10.1073/pnas.1424795112
Conforti, L., Petrovic, M., Mohammad, D., Lee, S., Ma, Q., Barone, S., & Filipovich, A. H. (2003). Hypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: A possible role in T cell proliferation. Journal of Immunology (Baltimore, Md.: 1950), 170(2), 695–702. https://doi.org/10.4049/jimmunol.170.2.695
DeLeo, J. A., Colburn, R. W., Nichols, M., & Malhotra, A. (1996). Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. Journal of Interferon & Cytokine Research: The Official Journal of the International Society for Interferon and Cytokine Research, 16(9), 695–700. https://doi.org/10.1089/jir.1996.16.695
Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. https://doi.org/10.1007/s00262-008-0523-4
Dimeloe, S., Mehling, M., Frick, C., Loeliger, J., Bantug, G. R., Sauder, U., Fischer, M., Belle, R., Develioglu, L., Tay, S., Langenkamp, A., & Hess, C. (2016). The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology (Baltimore, Md.: 1950), 196(1), 106–114. https://doi.org/10.4049/jimmunol.1501766
Downs-Canner, S. M., Meier, J., Vincent, B. G., & Serody, J. S. (2022). B Cell Function in the Tumor Microenvironment. Annual Review of Immunology, 40(1), 169–193. https://doi.org/10.1146/annurev-immunol-101220-015603
Dziurla, R., Gaber, T., Fangradt, M., Hahne, M., Tripmacher, R., Kolar, P., Spies, C. M., Burmester, G. R., & Buttgereit, F. (2010). Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunology Letters, 131(1), 97–105. https://doi.org/10.1016/j.imlet.2010.02.008
Eshhar, Z., Waks, T., Gross, G., & Schindler, D. G. (1993). Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 90(2), 720–724. https://doi.org/10.1073/pnas.90.2.720
Gaber, T., Tran, C. L., Schellmann, S., Hahne, M., Strehl, C., Hoff, P., Radbruch, A., Burmester, G.-R., & Buttgereit, F. (2013). Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation. European Journal of Immunology, 43(6), 1588–1597. https://doi.org/10.1002/eji.201242754
Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174. https://doi.org/10.1038/nri2506
Gabrilovich, D. I., Velders, M. P., Sotomayor, E. M., & Kast, W. M. (2001). Mechanism of Immune Dysfunction in Cancer Mediated by Immature Gr-1 + Myeloid Cells. The Journal of Immunology, 166(9), 5398–5406. https://doi.org/10.4049/jimmunol.166.9.5398
Gao, X., Sui, H., Zhao, S., Gao, X., Su, Y., & Qu, P. (2021). Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Frontiers in Immunology, 11, 585214. https://doi.org/10.3389/fimmu.2020.585214
Grada, Z., Hegde, M., Byrd, T., Shaffer, D. R., Ghazi, A., Brawley, V. S., Corder, A., Schönfeld, K., Koch, J., Dotti, G., Heslop, H. E., Gottschalk, S., Wels, W. S., Baker, M. L., & Ahmed, N. (2013). TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Molecular Therapy. Nucleic Acids, 2, e105. https://doi.org/10.1038/mtna.2013.32
Granucci, F., Foti, M., & Ricciardi‐Castagnoli, P. (2005). Dendritic Cell Biology. In Advances in Immunology (Vol. 88, pp. 193–233). Elsevier. https://doi.org/10.1016/S0065-2776(05)88006-X
Grosso, J. F., & Jure-Kunkel, M. N. (2013). CTLA-4 blockade in tumor models: An overview of preclinical and translational research. Cancer Immunity, 13, 5. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3559193/
Halliday, N., Williams, C., Kennedy, A., Waters, E., Pesenacker, A. M., Soskic, B., Hinze, C., Hou, T. Z., Rowshanravan, B., Janman, D., Walker, L. S. K., & Sansom, D. M. (2020). CD86 Is a Selective CD28 Ligand Supporting FoxP3+ Regulatory T Cell Homeostasis in the Presence of High Levels of CTLA-4. Frontiers in Immunology, 11, 600000. https://doi.org/10.3389/fimmu.2020.600000
Hamilos, D. L. (1989). Antigen presenting cells. Immunologic Research, 8(2), 98–117. https://doi.org/10.1007/BF02919073
Hartmann, J., Schüßler-Lenz, M., Bondanza, A., & Buchholz, C. J. (2017). Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 9(9), 1183–1197. https://doi.org/10.15252/emmm.201607485
He, H., Liao, Q., Zhao, C., Zhu, C., Feng, M., Liu, Z., Jiang, L., Zhang, L., Ding, X., Yuan, M., Zhang, X., & Xu, J. (2021). Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. Journal for Immunotherapy of Cancer, 9(10), e002755. https://doi.org/10.1136/jitc-2021-002755
Hinshaw, D. C., & Shevde, L. A. (2019). The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Research, 79(18), 4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962
Hockel, M., & Vaupel, P. (2001). Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. JNCI Journal of the National Cancer Institute, 93(4), 266–276. https://doi.org/10.1093/jnci/93.4.266
Hoffman, W., Lakkis, F. G., & Chalasani, G. (2016). B Cells, Antibodies, and More. Clinical Journal of the American Society of Nephrology, 11(1), 137–154. https://doi.org/10.2215/CJN.09430915
Hu, C.-M., Jang, S. Y., Fanzo, J. C., & Pernis, A. B. (2002). Modulation of T cell cytokine production by interferon regulatory factor-4. The Journal of Biological Chemistry, 277(51), 49238–49246. https://doi.org/10.1074/jbc.M205895200
Hu, W., Wang, G., Huang, D., Sui, M., & Xu, Y. (2019). Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Frontiers in Immunology, 10, 1205. https://doi.org/10.3389/fimmu.2019.01205
Huang, L. E., Gu, J., Schau, M., & Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1α is mediated by an O 2 -dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences, 95(14), 7987–7992. https://doi.org/10.1073/pnas.95.14.7987
Juillerat, A., Marechal, A., Filhol, J. M., Valogne, Y., Valton, J., Duclert, A., Duchateau, P., & Poirot, L. (2017). An oxygen sensitive self-decision making engineered CAR T-cell. Scientific Reports, 7, 39833. https://doi.org/10.1038/srep39833
Jung, E., Shin, H., Hooch Antink, W., Sung, Y.-E., & Hyeon, T. (2020). Recent Advances in Electrochemical Oxygen Reduction to H 2 O 2: Catalyst and Cell Design. ACS Energy Letters, 5(6), 1881–1892. https://doi.org/10.1021/acsenergylett.0c00812
Kim, G.-E., Kim, N. I., Lee, J. S., Park, M. H., & Kang, K. (2020). Differentially Expressed Genes in Matched Normal, Cancer, and Lymph Node Metastases Predict Clinical Outcomes in Patients With Breast Cancer. Applied Immunohistochemistry & Molecular Morphology, 28(2), 111–122. https://doi.org/10.1097/PAI.0000000000000717
King, A. C., & Orozco, J. S. (2019). Axicabtagene Ciloleucel: The First FDA-Approved CAR T-Cell Therapy for Relapsed/Refractory Large B-Cell Lymphoma. Journal of the Advanced Practitioner in Oncology, 10(8), 878–882. https://doi.org/10.6004/jadpro.2019.10.8.9
Kondělková, K., Vokurková, D., Krejsek, J., Borská, L., Fiala, Z., & Andrýs, C. (2010). Regulatory T cells (Treg) and Their Roles in Immune System with Respect to Immunopathological Disorders. Acta Medica (Hradec Kralove, Czech Republic), 53(2), 73–77. https://doi.org/10.14712/18059694.2016.63
Korman, A. J., Garrett-Thomson, S. C., & Lonberg, N. (2022). The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nature Reviews Drug Discovery, 21(7), 509–528. https://doi.org/10.1038/s41573-021-00345-8
Krieger, J. A., Landsiedel, J. C., & Lawrence, D. A. (1996). Differential in vitro effects of physiological and atmospheric oxygen tension on normal human peripheral blood mononuclear cell proliferation, cytokine and immunoglobulin production. International Journal of Immunopharmacology, 18(10), 545–552. https://doi.org/10.1016/s0192-0561(96)00057-4
Lappin, D. F., MacLeod, C. P., Kerr, A., Mitchell, T., & Kinane, D. F. (2001). Anti-inflammatory cytokine IL-10 and T cell cytokine profile in periodontitis granulation tissue. Clinical and Experimental Immunology, 123(2), 294–300. https://doi.org/10.1046/j.1365-2249.2001.01448.x
Larbi, A., Zelba, H., Goldeck, D., & Pawelec, G. (2010). Induction of HIF-1alpha and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. Journal of Leukocyte Biology, 87(2), 265–273. https://doi.org/10.1189/jlb.0509304
Li, C.-H., Kuo, W.-H., Chang, W.-C., Huang, S.-C., Chang, K.-J., & Sheu, B.-C. (2011). Activation of regulatory T cells instigates functional down-regulation of cytotoxic T lymphocytes in human breast cancer. Immunologic Research, 51(1), 71–79. https://doi.org/10.1007/s12026-011-8242-x
Li, Q.-G., He, Y.-H., Wu, H., Yang, C.-P., Pu, S.-Y., Fan, S.-Q., Jiang, L.-P., Shen, Q.-S., Wang, X.-X., Chen, X.-Q., Yu, Q., Li, Y., Sun, C., Wang, X., Zhou, J., Li, H.-P., Chen, Y.-B., & Kong, Q.-P. (2017). A Normalization-Free and Nonparametric Method Sharpens Large-Scale Transcriptome Analysis and Reveals Common Gene Alteration Patterns in Cancers. Theranostics, 7(11), 2888–2899. https://doi.org/10.7150/thno.19425
Liang, B., Workman, C., Lee, J., Chew, C., Dale, B. M., Colonna, L., Flores, M., Li, N., Schweighoffer, E., Greenberg, S., Tybulewicz, V., Vignali, D., & Clynes, R. (2008). Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. Journal of Immunology (Baltimore, Md.: 1950), 180(9), 5916–5926. https://doi.org/10.4049/jimmunol.180.9.5916
Liu, J., Lan, Y., Tian, G., & Yang, J. (2022). A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer. Frontiers in Oncology, 12, 899156. https://doi.org/10.3389/fonc.2022.899156
Liu, J., Liu, Z., Fu, F., Li, R., Lei, T., Deng, Q., Li, L., Yang, D., Wang, F., & Liao, C. (2018). Microarray screening for key genes and prognosis factors in interferon regulatory factor 1-silenced ovarian cancer SKOV-3 cells. Translational Cancer Research, 7(2), 310–320. https://doi.org/10.21037/tcr.2018.03.10
Liu, Y.-J. (2007). TSLP: an Epithelial Cell Cytokine that Regulates T Cell Differentiation by Conditioning Dendritic Cell Maturation. Immunology. https://doi.org/10.1146/annurev.immunol.25.022106.141718
Long, K. B., & Beatty, G. L. (2013). Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology, 2(12), e26860. https://doi.org/10.4161/onci.26860
Long, T., Liu, Z., Zhou, X., Yu, S., Tian, H., & Bao, Y. (2019). Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2019.9878
Lorian, V. (1989). In vitro simulation of in vivo conditions: Physical state of the culture medium. Journal of Clinical Microbiology, 27(11), 2403–2406. https://doi.org/10.1128/jcm.27.11.2403-2406.1989
Makino, Y., Nakamura, H., Ikeda, E., Ohnuma, K., Yamauchi, K., Yabe, Y., Poellinger, L., Okada, Y., Morimoto, C., & Tanaka, H. (2003). Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. Journal of Immunology (Baltimore, Md.: 1950), 171(12), 6534–6540. https://doi.org/10.4049/jimmunol.171.12.6534
Maxwell, P. H., Mole, D. R., Pugh, C. W., & Ratcliffe, P. J. (2001). Regulation of HIF by the von Hippel-Lindau Tumour Suppressor: Implications for Cellular Oxygen Sensing. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 52(1), 43–47. https://doi.org/10.1080/15216540252774757
Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., Zanovello, P., & Segal, D. M. (2002). Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. The Journal of Immunology, 168(2), 689–695. https://doi.org/10.4049/jimmunol.168.2.689
McKeown, S. R. (2014). Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. The British Journal of Radiology, 87(1035), 20130676. https://doi.org/10.1259/bjr.20130676
McNamee, E. N., Korns Johnson, D., Homann, D., & Clambey, E. T. (2013). Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunologic Research, 55(1–3), 58–70. https://doi.org/10.1007/s12026-012-8349-8
Mittal, S. K., Cho, K.-J., Ishido, S., & Roche, P. A. (2015). Interleukin 10 (IL-10)-mediated Immunosuppression: MARCH-I INDUCTION REGULATES ANTIGEN PRESENTATION BY MACROPHAGES BUT NOT DENDRITIC CELLS. The Journal of Biological Chemistry, 290(45), 27158–27167. https://doi.org/10.1074/jbc.M115.682708
Muñoz-Fontela, C., Mandinova, A., Aaronson, S. A., & Lee, S. W. (2016). Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nature Reviews. Immunology, 16(12), 741–750. https://doi.org/10.1038/nri.2016.99
Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 83. https://doi.org/10.2147/HP.S93413
Nakazawa, M. S., Keith, B., & Simon, M. C. (2016). Oxygen availability and metabolic adaptations. Nature Reviews Cancer, 16(10), 663–673. https://doi.org/10.1038/nrc.2016.84
Naldini, A., Carraro, F., Silvestri, S., & Bocci, V. (1997). Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. Journal of Cellular Physiology, 173(3), 335–342. https://doi.org/10.1002/(SICI)1097-4652(199712)173:3<335::AID-JCP5>3.0.CO;2-O
Ni, J., Wang, X., Stojanovic, A., Zhang, Q., Wincher, M., Bühler, L., Arnold, A., Correia, M. P., Winkler, M., Koch, P.-S., Sexl, V., Höfer, T., & Cerwenka, A. (2020). Single-Cell RNA Sequencing of Tumor-Infiltrating NK Cells Reveals that Inhibition of Transcription Factor HIF-1α Unleashes NK Cell Activity. Immunity, 52(6), 1075-1087.e8. https://doi.org/10.1016/j.immuni.2020.05.001
Ohta, A., Madasu, M., Subramanian, M., Kini, R., Jones, G., Choukèr, A., Ohta, A., & Sitkovsky, M. (2014). Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible. International Immunology, 26(2), 83–91. https://doi.org/10.1093/intimm/dxt045
Ohue, Y., & Nishikawa, H. (2019). Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Science, 110(7), 2080–2089. https://doi.org/10.1111/cas.14069
Orecchioni, M., Ghosheh, Y., Pramod, A. B., & Ley, K. (2019). Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively Activated Macrophages. Frontiers in Immunology, 10, 1084. https://doi.org/10.3389/fimmu.2019.01084
Ostrand-Rosenberg, S., & Sinha, P. (2009). Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer. The Journal of Immunology, 182(8), 4499–4506. https://doi.org/10.4049/jimmunol.0802740
Ovcinnikovs, V., Ross, E. M., Petersone, L., Edner, N. M., Heuts, F., Ntavli, E., Kogimtzis, A., Kennedy, A., Wang, C. J., Bennett, C. L., Sansom, D. M., & Walker, L. S. K. (2019). CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Science Immunology, 4(35), eaaw0902. https://doi.org/10.1126/sciimmunol.aaw0902
Ozaktay, A. C., Kallakuri, S., Takebayashi, T., Cavanaugh, J. M., Asik, I., DeLeo, J. A., & Weinstein, J. N. (2006). Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 15(10), 1529–1537. https://doi.org/10.1007/s00586-005-0058-8
Paluskievicz, C. M., Cao, X., Abdi, R., Zheng, P., Liu, Y., & Bromberg, J. S. (2019). T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Frontiers in Immunology, 10, 2453. https://doi.org/10.3389/fimmu.2019.02453
Pan, Y., Yu, Y., Wang, X., & Zhang, T. (2020). Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 11, 583084. https://doi.org/10.3389/fimmu.2020.583084
Piechnik, A., Dmoszynska, A., Omiotek, M., Mlak, R., Kowal, M., Stilgenbauer, S., Bullinger, L., & Giannopoulos, K. (2013). The VEGF receptor, neuropilin-1, represents a promising novel target for chronic lymphocytic leukemia patients. International Journal of Cancer, 133(6), 1489–1496. https://doi.org/10.1002/ijc.28135
Pylayeva-Gupta, Y. (2016). Molecular Pathways: Interleukin-35 in Autoimmunity and Cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 22(20), 4973–4978. https://doi.org/10.1158/1078-0432.CCR-16-0743
Roman, J., Rangasamy, T., Guo, J., Sugunan, S., Meednu, N., Packirisamy, G., Shimoda, L. A., Golding, A., Semenza, G., & Georas, S. N. (2010). T-cell activation under hypoxic conditions enhances IFN-gamma secretion. American Journal of Respiratory Cell and Molecular Biology, 42(1), 123–128. https://doi.org/10.1165/rcmb.2008-0139OC
Rosenberg, A. (Ed.). (2015). Biobetters: Protein engineering to approach the curative. Springer. https://doi.org/10.1007/978-1-4939-2543-8
Saliani, M., Jalal, R., & Javadmanesh, A. (2022). Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells. Scientific Reports, 12(1), 7965. https://doi.org/10.1038/s41598-022-11697-5
Sansom, D. M. (2000). CD28, CTLA-4 and their ligands: Who does what and to whom?: The effects of CD28 and CTLA-4 ligands. Immunology, 101(2), 169–177. https://doi.org/10.1046/j.1365-2567.2000.00121.x
Seder, R. A., & Ahmed, R. (2003). Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunology, 4(9), 835–842. https://doi.org/10.1038/ni969
Simon, S., & Labarriere, N. (2017). PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology, 7(1), e1364828. https://doi.org/10.1080/2162402X.2017.1364828
Sinha, P., Clements, V. K., & Ostrand-Rosenberg, S. (2005). Reduction of Myeloid-Derived Suppressor Cells and Induction of M1 Macrophages Facilitate the Rejection of Established Metastatic Disease. The Journal of Immunology, 174(2), 636–645. https://doi.org/10.4049/jimmunol.174.2.636
Smith, C. C., Selitsky, S. R., Chai, S., Armistead, P. M., Vincent, B. G., & Serody, J. S. (2019). Alternative tumour-specific antigens. Nature Reviews Cancer, 19(8), 465–478. https://doi.org/10.1038/s41568-019-0162-4
Sorguven, E., Bozkurt, S., & Baldock, C. (2021). Computer simulations can replace in-vivo experiments for implantable medical devices. Physical and Engineering Sciences in Medicine, 44(1), 1–5. https://doi.org/10.1007/s13246-021-00978-4
Szeto, C., Lobos, C. A., Nguyen, A. T., & Gras, S. (2020). TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. International Journal of Molecular Sciences, 22(1), E68. https://doi.org/10.3390/ijms22010068
Twomey, J. D., & Zhang, B. (2021). Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. The AAPS Journal, 23(2), 39. https://doi.org/10.1208/s12248-021-00574-0
Veglia, F., & Gabrilovich, D. I. (2017). Dendritic cells in cancer: The role revisited. Current Opinion in Immunology, 45, 43–51. https://doi.org/10.1016/j.coi.2017.01.002
Velilla, P. A., Rugeles, M. T., & Chougnet, C. A. (2006). Defective antigen-presenting cell function in human neonates. Clinical Immunology, 121(3), 251–259. https://doi.org/10.1016/j.clim.2006.08.010
Vuillefroy de Silly, R., Dietrich, P.-Y., & Walker, P. R. (2016). Hypoxia and antitumor CD8+ T cells: An incompatible alliance? Oncoimmunology, 5(12), e1232236. https://doi.org/10.1080/2162402X.2016.1232236
Walsh, J. C., Lebedev, A., Aten, E., Madsen, K., Marciano, L., & Kolb, H. C. (2014). The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxidants & Redox Signaling, 21(10), 1516–1554. https://doi.org/10.1089/ars.2013.5378
Wang, J., Hu, Y., & Huang, H. (2018). Current development of chimeric antigen receptor T-cell therapy. Stem Cell Investigation, 5, 44. https://doi.org/10.21037/sci.2018.11.05
Wei, S. C., Duffy, C. R., & Allison, J. P. (2018). Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8(9), 1069–1086. https://doi.org/10.1158/2159-8290.CD-18-0367
Westendorf, A. M., Skibbe, K., Adamczyk, A., Buer, J., Geffers, R., Hansen, W., Pastille, E., & Jendrossek, V. (2017). Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity. Cellular Physiology and Biochemistry, 41(4), 1271–1284. https://doi.org/10.1159/000464429
Wrzesinski, S. H., Wan, Y. Y., & Flavell, R. A. (2007). Transforming growth factor-beta and the immune response: Implications for anticancer therapy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(18 Pt 1), 5262–5270. https://doi.org/10.1158/1078-0432.CCR-07-1157
Xu, Y., Chaudhury, A., Zhang, M., Savoldo, B., Metelitsa, L. S., Rodgers, J., Yustein, J. T., Neilson, J. R., & Dotti, G. (2016). Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. The Journal of Clinical Investigation, 126(7), 2678–2688. https://doi.org/10.1172/JCI85834
Yin, H., Chu, A., Liu, S., Yuan, Y., & Gong, Y. (2020). Identification of DEGs and transcription factors involved in H. pylori -associated inflammation and their relevance with gastric cancer. PeerJ, 8, e9223. https://doi.org/10.7717/peerj.9223
Yoon, S. R., Kim, T.-D., & Choi, I. (2015). Understanding of molecular mechanisms in natural killer cell therapy. Experimental & Molecular Medicine, 47(2), e141–e141. https://doi.org/10.1038/emm.2014.114
Zagzag, D., Zhong, H., Scalzitti, J. M., Laughner, E., Simons, J. W., & Semenza, G. L. (2000). Expression of hypoxia-inducible factor 1alpha in brain tumors: Association with angiogenesis, invasion, and progression. Cancer, 88(11), 2606–2618. https://pubmed.ncbi.nlm.nih.gov/10861440/
Zah, E., Lin, M.-Y., Silva-Benedict, A., Jensen, M. C., & Chen, Y. Y. (2016). T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunology Research, 4(6), 498–508. https://doi.org/10.1158/2326-6066.CIR-15-0231
Zarrin, A. A., & Monteiro, R. C. (2020). Editorial: The Role of Inhibitory Receptors in Inflammation and Cancer. Frontiers in Immunology, 11, 633686. https://doi.org/10.3389/fimmu.2020.633686
Zhang, L., Sun, L., Zhang, B., & Chen, L. (2019). Identification of Differentially Expressed Genes (DEGs) Relevant to Prognosis of Ovarian Cancer by Use of Integrated Bioinformatics Analysis and Validation by Immunohistochemistry Assay. Medical Science Monitor, 25, 9902–9912. https://doi.org/10.12659/MSM.921661
Zuckerberg, A. L., Goldberg, L. I., & Lederman, H. M. (1994). Effects of hypoxia on interleukin-2 mRNA expression by T lymphocytes. Critical Care Medicine, 22(2), 197–203. https://doi.org/10.1097/00003246-199402000-00008
Published
How to Cite
Issue
Section
Copyright (c) 2022 Alexandra Meyer; Luke Riggan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.