Inducible CRISPR/Cas9 Systems in the Treatment of Neurodegenerative Diseases
DOI:
https://doi.org/10.47611/jsrhs.v11i4.3828Keywords:
Biology, Gene Editing, CRISPR, Huntington's, Parkinson's, Neurodegenerative DiseasesAbstract
Inducible clustered, regularly interspaced, short, palindromic repeats with the CRISPR-associated protein 9 (CRISPR/Cas9) system are a legitimate avenue for treating Parkinson’s and Huntington’s diseases. The CRISPR/Cas9 system, introduced in 2012, is a breakthrough gene-editing mechanism that can be used to modify genomes. The CRISPR/Cas9 system has been used to treat neurodegenerative diseases such as Parkinson’s and Huntington’s. Until now, a majority of CRISPR/Cas9 approaches have been geared towards treating the symptoms of these diseases rather than the causes themselves. Drug inducible CRISPR/Cas9 systems provide more avenues for novel treatments of Parkinson's and Huntington’s diseases that target the genetic causes of these diseases rather than the symptoms. Although there are many limitations to CRISPR, such as delivery methods and target specificity, many improvements are being implemented to increase the efficiency and efficacy of the CRISPR/Cas9 system.
Downloads
References or Bibliography
Bayarsaikhan, E., Bayarsaikhan, D., Lee, J., Son, M., Oh, S., Moon, J., Park, H.-J., Roshini, A., Kim, S. U., Song, B.-J., Jo, S.-M., Byun, K., & Lee, B. (2016). Microglial AGE-albumin is critical for neuronal death in Parkinson’s disease: A possible implication for theranostics. International Journal of Nanomedicine, 10(Spec Iss), 281–292. https://doi.org/10.2147/IJN.S95077
Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., Lin, J.-F., Wu, S.-H., Swidzinski, J., Ishizaki, K., & Leaver, C. J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42(4), 567–585. https://doi.org/10.1111/j.1365-313X.2005.02399.x
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L., & Gao, G. (2021). Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy, 6, 53. https://doi.org/10.1038/s41392-021-00487-6
Carroll, D. (2016). Genome editing: Progress and challenges for medical applications. Genome Medicine, 8(1), 120. https://doi.org/10.1186/s13073-016-0378-9
Karimian, A., Gorjizadeh, N., Alemi, F., Asemi, Z., Azizian, K., Soleimanpour, J., Malakouti, F., Targhazeh, N., Majidinia, M., & Yousefi, B. (2020). CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sciences, 259, 118165. https://doi.org/10.1016/j.lfs.2020.118165
Kozovska, Z., Rajcaniova, S., Munteanu, P., Dzacovska, S., & Demkova, L. (2021). CRISPR: History and perspectives to the future. Biomedicine & Pharmacotherapy, 141, 111917. https://doi.org/10.1016/j.biopha.2021.111917
Lee, J., Bayarsaikhan, D., Arivazhagan, R., Park, H., Lim, B., Gwak, P., Jeong, G.-B., Lee, J., Byun, K., & Lee, B. (2019). CRISPR/Cas9 Edited sRAGE-MSCs Protect Neuronal Death in Parkinson’s Disease Model. International Journal of Stem Cells, 12(1), 114–124. https://doi.org/10.15283/ijsc18110
Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257. https://doi.org/10.1080/10717544.2018.1474964
Long, C., McAnally, J. R., Shelton, J. M., Mireault, A. A., Bassel-Duby, R., & Olson, E. N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science, 345(6201), 1184–1188. https://doi.org/10.1126/science.1254445
Lundin, A., Porritt, M. J., Jaiswal, H., Seeliger, F., Johansson, C., Bidar, A. W., Badertscher, L., Wimberger, S., Davies, E. J., Hardaker, E., Martins, C. P., James, E., Admyre, T., Taheri-Ghahfarokhi, A., Bradley, J., Schantz, A., Alaeimahabadi, B., Clausen, M., Xu, X., … Maresca, M. (2020). Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery. Nature Communications, 11(1), 4903. https://doi.org/10.1038/s41467-020-18548-9
Manghwar, H., Li, B., Ding, X., Hussain, A., Lindsey, K., Zhang, X., & Jin, S. (2020). CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. Advanced Science, 7(6), 1902312. https://doi.org/10.1002/advs.201902312
McColgan, P., & Tabrizi, S. J. (2018). Huntington’s disease: A clinical review. European Journal of Neurology, 25(1), 24–34. https://doi.org/10.1111/ene.13413
Rahman, S., Datta, M., Kim, J., & Jan, A. T. (2019). CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases. Seminars in Cell & Developmental Biology, 96, 22–31. https://doi.org/10.1016/j.semcdb.2019.05.014
Redman, M., King, A., Watson, C., & King, D. (2016). What is CRISPR/Cas9? Archives of Disease in Childhood - Education and Practice, 101(4), 213–215. https://doi.org/10.1136/archdischild-2016-310459
Singh, N., Pillay, V., & Choonara, Y. E. (2007). Advances in the treatment of Parkinson’s disease. Progress in Neurobiology, 81(1), 29–44. https://doi.org/10.1016/j.pneurobio.2006.11.009
Sun, N., Petiwala, S., Wang, R., Lu, C., Hu, M., Ghosh, S., Hao, Y., Miller, C. P., & Chung, N. (2019). Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening. BMC Genomics, 20(1), 225. https://doi.org/10.1186/s12864-019-5601-9
Thomas, R. L., & Gustafsson, Å. B. (2013). Mitochondrial Autophagy. Circulation Journal : Official Journal of the Japanese Circulation Society, 77(10), 2449–2454. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028823/
Wang, Y., Liu, K. I., Sutrisnoh, N.-A. B., Srinivasan, H., Zhang, J., Li, J., Zhang, F., Lalith, C. R. J., Xing, H., Shanmugam, R., Foo, J. N., Yeo, H. T., Ooi, K. H., Bleckwehl, T., Par, Y. Y. R., Lee, S. M., Ismail, N. N. B., Sanwari, N. A. B., Lee, S. T. V., … Tan, M. H. (2018). Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biology, 19(1), 62. https://doi.org/10.1186/s13059-018-1445-x
Zhang, J., Chen, L., Zhang, J., & Wang, Y. (2019). Drug Inducible CRISPR/Cas Systems. Computational and Structural Biotechnology Journal, 17, 1171–1177. https://doi.org/10.1016/j.csbj.2019.07.015
How CRISPR Is Changing Cancer Research and Treatment. (2020, July 27). National Cancer Institute. Retrieved September 22, 2022, from https://www.cancer.gov/news-events/cancer-currents-blog/2020/crispr-cancer-research-treatment
Published
How to Cite
Issue
Section
Copyright (c) 2022 Praneeth Tummala; Connor Dunn
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.