The impact of development and application of soft material and novel actuators in soft robotics technology on future biomedical engineering
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3818Keywords:
Biomedical Engineering, Biomedical Application, Soft Robotics, Soft Actuation, Soft MaterialAbstract
The goal of the robotics industry has been to build devices that mirror the remarkable powers of the human body ever since it was founded. In an attempt to emulate the compliance and deformability of genuine biological tissue, efforts have been made to construct actuators and electronics out of elastomers, textiles, and other soft materials as early as the 1940s. Since then, the field of soft robotics has advanced extraordinarily, with recent work concentrating on actuation, sensing, and application. In this review, recent advancement in the soft robotically field from the perspective of soft actuators, soft material, and biomedical application is highlighted. Soft actuators had gone decent development along with different advantages and setbacks. The need for chemistry and material science has been increasingly large in recent years and the material for 4D printing manufacturing is a major focus. Biomedical applications can be advanced by introducing soft robotics combined with existing technology. The biocompatibility issue is a major challenge to be faced, and perspectives on such regard will be discussed.
Downloads
References or Bibliography
Acome, E., Mitchell, S. K., Morrissey, T. G., Emmett, M. B., Benjamin, C., King, M., Radakovitz, M., & Keplinger, C. (2018). Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 359(6371), 61–65. https://doi.org/10.1126/science.aao6139
Agarwal, T., Hann, S. Y., Chiesa, I., Cui, H., Celikkin, N., Micalizzi, S., Barbetta, A., Costantini, M., Esworthy, T., Zhang, L. G., de Maria, C., & Maiti, T. K. (2021). 4D printing in biomedical applications: emerging trends and technologies. Journal of Materials Chemistry B, 9(37), 7608–7632. https://doi.org/10.1039/D1TB01335A
Bartlett, M. D., Kazem, N., Powell-Palm, M. J., Huang, X., Sun, W., Malen, J. A., & Majidi, C. (2017). High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proceedings of the National Academy of Sciences, 114(9), 2143–2148. https://doi.org/10.1073/pnas.1616377114
Boyraz, P., Runge, G., & Raatz, A. (2018). An overview of novel actuators for soft robotics. In High-Throughput (Vol. 7, Issue 3). MDPI AG. https://doi.org/10.3390/act7030048
Breger, J. C., Yoon, C., Xiao, R., Kwag, H. R., Wang, M. O., Fisher, J. P., Nguyen, T. D., & Gracias, D. H. (2015). Self-Folding Thermo-Magnetically Responsive Soft Microgrippers. ACS Applied Materials & Interfaces, 7(5), 3398–3405. https://doi.org/10.1021/am508621s
Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum Robots for Medical Applications: A Survey. IEEE Transactions on Robotics, 31(6), 1261–1280. https://doi.org/10.1109/TRO.2015.2489500
Carpi, F., Bauer, S., & de Rossi, D. (2010). Stretching Dielectric Elastomer Performance. Science, 330(6012), 1759–1761. https://doi.org/10.1126/science.1194773
Charalambides, A., & Bergbreiter, S. (2017). Rapid Manufacturing of Mechanoreceptive Skins for Slip Detection in Robotic Grasping. Advanced Materials Technologies, 2(1), 1600188. https://doi.org/10.1002/admt.201600188
Chen, Y., Chen, C., Rehman, H. U., Zheng, X., Li, H., Liu, H., & Hedenqvist, M. S. (2020). Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. Molecules, 25(18), 4246. https://doi.org/10.3390/molecules25184246
Cianchetti, M., Laschi, C., Menciassi, A., & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143–153. https://doi.org/10.1038/s41578-018-0022-y
Cohrs, N. H., Petrou, A., Loepfe, M., Yliruka, M., Schumacher, C. M., Kohll, A. X., Starck, C. T., Schmid Daners, M., Meboldt, M., Falk, V., & Stark, W. J. (2017). A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation. Artificial Organs, 41(10), 948–958. https://doi.org/10.1111/aor.12956
Comber, D. B., Slightam, J. E., Gervasi, V. R., Neimat, J. S., & Barth, E. J. (2016). Design, Additive Manufacture, and Control of a Pneumatic MR-Compatible Needle Driver. IEEE Transactions on Robotics, 32(1), 138–149. https://doi.org/10.1109/TRO.2015.2504981
Cui, H., Miao, S., Esworthy, T., Lee, S., Zhou, X., Hann, S. Y., Webster, T. J., Harris, B. T., & Zhang, L. G. (2019). A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research, 12(6), 1381–1388. https://doi.org/10.1007/s12274-019-2340-9
Delph, M. A., Fischer, S. A., Gauthier, P. W., Luna, C. H. M., Clancy, E. A., & Fischer, G. S. (2013). A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 1–7. https://doi.org/10.1109/ICORR.2013.6650426
Deng, H., Zhang, C., Su, J.-W., Xie, Y., Zhang, C., & Lin, J. (2018). Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. Journal of Materials Chemistry B, 6(34), 5415–5423. https://doi.org/10.1039/C8TB01285G
Diller, E., Giltinan, J., Lum, G. Z., Ye, Z., & Sitti, M. (2016). Six-degree-of-freedom magnetic actuation for wireless microrobotics. The International Journal of Robotics Research, 35(1–3), 114–128. https://doi.org/10.1177/0278364915583539
Diller, E., Miyashita, S., & Sitti, M. (2012). Remotely addressable magnetic composite micropumps. RSC Advances, 2(9), 3850. https://doi.org/10.1039/c2ra01318e
Ding, H., Zhang, X., Liu, Y., & Ramakrishna, S. (2019). Review of mechanisms and deformation behaviors in 4D printing. The International Journal of Advanced Manufacturing Technology, 105(11), 4633–4649. https://doi.org/10.1007/s00170-019-03871-3
Dolan, E. B., Varela, C. E., Mendez, K., Whyte, W., Levey, R. E., Robinson, S. T., Maye, E., O’Dwyer, J., Beatty, R., Rothman, A., Fan, Y., Hochstein, J., Rothenbucher, S. E., Wylie, R., Starr, J. R., Monaghan, M., Dockery, P., Duffy, G. P., & Roche, E. T. (2019). An actuatable soft reservoir modulates host foreign body response. Science Robotics, 4(33). https://doi.org/10.1126/scirobotics.aax7043
Dong, X., Xu, J., Xu, X., Dai, S., Zhou, X., Ma, C., Cheng, G., Yuan, N., & Ding, J. (2020). Sunlight-Driven Continuous Flapping-Wing Motion. ACS Applied Materials & Interfaces, 12(5), 6460–6470. https://doi.org/10.1021/acsami.9b20250
El-Atab, N., Mishra, R. B., Al-Modaf, F., Joharji, L., Alsharif, A. A., Alamoudi, H., Diaz, M., Qaiser, N., & Hussain, M. M. (2020). Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2(10), 2000128. https://doi.org/10.1002/aisy.202000128
Fassler, A., & Majidi, C. (2015). Liquid-Phase Metal Inclusions for a Conductive Polymer Composite. Advanced Materials, 27(11), 1928–1932. https://doi.org/10.1002/adma.201405256
Felton, S. M., Tolley, M. T., Shin, B., Onal, C. D., Demaine, E. D., Rus, D., & Wood, R. J. (2013). Self-folding with shape memory composites. Soft Matter, 9(32), 7688. https://doi.org/10.1039/c3sm51003d
Fusco, S., Sakar, M. S., Kennedy, S., Peters, C., Bottani, R., Starsich, F., Mao, A., Sotiriou, G. A., Pané, S., Pratsinis, S. E., Mooney, D., & Nelson, B. J. (2014). An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions. Advanced Materials, 26(6), 952–957. https://doi.org/10.1002/adma.201304098
Gordon, K. E., Sawicki, G. S., & Ferris, D. P. (2006). Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. Journal of Biomechanics, 39(10), 1832–1841. https://doi.org/10.1016/j.jbiomech.2005.05.018
Jeon, S.-J., Hauser, A. W., & Hayward, R. C. (2017). Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids. Accounts of Chemical Research, 50(2), 161–169. https://doi.org/10.1021/acs.accounts.6b00570
Jiang, H. Y., Kelch, S., & Lendlein, A. (2006). Polymers Move in Response to Light. Advanced Materials, 18(11), 1471–1475. https://doi.org/10.1002/adma.200502266
Kang, B. B., Lee, H., In, H., Jeong, U., Chung, J., & Cho, K.-J. (2016). Development of a polymer-based tendon-driven wearable robotic hand. 2016 IEEE International Conference on Robotics and Automation (ICRA), 3750–3755. https://doi.org/10.1109/ICRA.2016.7487562
Kawamura, T., Takanaka, K., Nakamura, T., & Osumi, H. (2013). Development of an orthosis for walking assistance using pneumatic artificial muscle: A quantitative assessment of the effect of assistance. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 1–6. https://doi.org/10.1109/ICORR.2013.6650350
Knite, M., Teteris, V., Kiploka, A., & Kaupuzs, J. (2004). Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sensors and Actuators A: Physical, 110(1–3), 142–149. https://doi.org/10.1016/j.sna.2003.08.006
Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., Dunn, M. L., & Qi, H. J. (2019). Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 29(2), 1805290. https://doi.org/10.1002/adfm.201805290
Kularatne, R. S., Kim, H., Boothby, J. M., & Ware, T. H. (2017). Liquid crystal elastomer actuators: Synthesis, alignment, and applications. Journal of Polymer Science Part B: Polymer Physics, 55(5), 395–411. https://doi.org/10.1002/polb.24287
Kwon, G. H., Park, J. Y., Kim, J. Y., Frisk, M. L., Beebe, D. J., & Lee, S.-H. (2008). Biomimetic Soft Multifunctional Miniature Aquabots. Small, 4(12), 2148–2153. https://doi.org/10.1002/smll.200800315
Lendlein, A., & Kelch, S. (2002). Shape-Memory Polymers. Angewandte Chemie International Edition, 41(12), 2034. https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
Liu, L., Liu, M.-H., Deng, L.-L., Lin, B.-P., & Yang, H. (2017). Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property. Journal of the American Chemical Society, 139(33), 11333–11336. https://doi.org/10.1021/jacs.7b06410
Liu, X., Wei, R., Hoang, P. T., Wang, X., Liu, T., & Keller, P. (2015). Reversible and Rapid Laser Actuation of Liquid Crystalline Elastomer Micropillars with Inclusion of Gold Nanoparticles. Advanced Functional Materials, 25(20), 3022–3032. https://doi.org/10.1002/adfm.201500443
Loepfe, M., Schumacher, C. M., Lustenberger, U. B., & Stark, W. J. (2015). An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robotics, 2(1), 33–41. https://doi.org/10.1089/soro.2014.0021
Majidi, C. (2019). Soft-Matter Engineering for Soft Robotics. Advanced Materials Technologies, 4(2). https://doi.org/10.1002/admt.201800477
Malachowski, K., Breger, J., Kwag, H. R., Wang, M. O., Fisher, J. P., Selaru, F. M., & Gracias, D. H. (2014). Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angewandte Chemie International Edition, 53(31), 8045–8049. https://doi.org/10.1002/anie.201311047
Manto, M., Topping, M., Soede, M., Sanchez-Lacuesta, J., Harwin, W., Pons, J., Williams, J., Skaarup, S., & Normie, L. (2003). Dynamically responsive intervention for tremor suppression. IEEE Engineering in Medicine and Biology Magazine, 22(3), 120–132. https://doi.org/10.1109/MEMB.2003.1213635
Marchese, A. D., Katzschmann, R. K., & Rus, D. (2015). A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2(1), 7–25. https://doi.org/10.1089/soro.2014.0022
Marckmann, G., & Verron, E. (2006). Comparison of Hyperelastic Models for Rubber-Like Materials. Rubber Chemistry and Technology, 79(5), 835–858. https://doi.org/10.5254/1.3547969
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
Menciassi, A., Moglia, A., Gorini, S., Pernorio, G., Stefanini, C., & Dario, P. (2005). Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract. Journal of Micromechanics and Microengineering, 15(11), 2045–2055. https://doi.org/10.1088/0960-1317/15/11/008
Miao, S., Cui, H., Nowicki, M., Xia, L., Zhou, X., Lee, S., Zhu, W., Sarkar, K., Zhang, Z., & Zhang, L. G. (2018). Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biosystems, 2(9), 1800101. https://doi.org/10.1002/adbi.201800101
Mohd Jani, J., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084
Mutlu, R., Alici, G., in het Panhuis, M., & Spinks, G. M. (2016). 3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 3(3), 120–133. https://doi.org/10.1089/soro.2016.0026
Otsuka, K., & Kakeshita, T. (2002). Science and Technology of Shape-Memory Alloys: New Developments. MRS Bulletin, 27(2), 91–100. https://doi.org/10.1557/mrs2002.43
Park, Y.-L., Chen, B., Pérez-Arancibia, N. O., Young, D., Stirling, L., Wood, R. J., Goldfield, E. C., & Nagpal, R. (2014). Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspiration & Biomimetics, 9(1), 016007. https://doi.org/10.1088/1748-3182/9/1/016007
Penumakala, P. K., Santo, J., & Thomas, A. (2020). A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering, 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336
Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M. C., & Dario, P. (2002). Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 49(6), 613–616. https://doi.org/10.1109/TBME.2002.1001976
R. K. Katzschmann, A. D. Marchese, & D. Rus. (2016). Springer Tracts in Advanced Robotics: Vol. Springer.
Ricotti, L., Trimmer, B., Feinberg, A. W., Raman, R., Parker, K. K., Bashir, R., Sitti, M., Martel, S., Dario, P., & Menciassi, A. (2017). Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2(12). https://doi.org/10.1126/scirobotics.aaq0495
Roseman, J. M., Lin, J., Ramakrishnan, S., Rosenstein, J. K., & Shepard, K. L. (2015). Hybrid integrated biological–solid-state system powered with adenosine triphosphate. Nature Communications, 6(1), 10070. https://doi.org/10.1038/ncomms10070
Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A., & Whitesides, G. M. (2013). Using Explosions to Power a Soft Robot. Angewandte Chemie International Edition, 52(10), 2892–2896. https://doi.org/10.1002/anie.201209540
Shian, S., & Clarke, D. R. (2016). Electrically-tunable surface deformation of a soft elastomer. Soft Matter, 12(13), 3137–3141. https://doi.org/10.1039/C6SM00090H
Shintake, J., Rosset, S., Schubert, B., Floreano, D., & Shea, H. (2016). Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Advanced Materials, 28(2), 231–238. https://doi.org/10.1002/adma.201504264
Small, I. W., Singhal, P., Wilson, T. S., & Maitland, D. J. (2010). Biomedical applications of thermally activated shape memory polymers. Journal of Materials Chemistry, 20(17), 3356. https://doi.org/10.1039/b923717h
Someya, Y., Omata, S., Hayakawa, T., Mitsuishi, M., Sugita, N., Harada, K., Noda, Y., Ueta, T., Totsuka, K., Araki, F., Aihara, H., & Arai, F. (2016). Training system using Bionic-eye for internal limiting membrane peeling. 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 1–3. https://doi.org/10.1109/MHS.2016.7824208
Sun, J.-Y., Keplinger, C., Whitesides, G. M., & Suo, Z. (2014). Ionic skin. Advanced Materials, 26(45), 7608–7614. https://doi.org/10.1002/adma.201403441
Sun, J.-Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133–136. https://doi.org/10.1038/nature11409
Wan, X., Luo, L., Liu, Y., & Leng, J. (2020). Direct Ink Writing Based 4D Printing of Materials and Their Applications. Advanced Science, 7(16), 2001000. https://doi.org/10.1002/advs.202001000
Wang, E., Desai, M. S., & Lee, S.-W. (2013). Light-Controlled Graphene-Elastin Composite Hydrogel Actuators. Nano Letters, 13(6), 2826–2830. https://doi.org/10.1021/nl401088b
Wehner, M., Quinlivan, B., Aubin, P. M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., & Walsh, C. (2013). A lightweight soft exosuit for gait assistance. 2013 IEEE International Conference on Robotics and Automation, 3362–3369. https://doi.org/10.1109/ICRA.2013.6631046
Whitesides, G. M. (2018). Soft-Robotik. Angewandte Chemie, 130(16), 4336–4353. https://doi.org/10.1002/ange.201800907
Whitney, R. J. (1953). The measurement of volume changes in human limbs. The Journal of Physiology, 121(1), 1–27. https://doi.org/10.1113/jphysiol.1953.sp004926
Wu, J., Zhao, Z., Kuang, X., Hamel, C. M., Fang, D., & Qi, H. J. (2018). Reversible shape change structures by grayscale pattern 4D printing. Multifunctional Materials, 1(1), 015002. https://doi.org/10.1088/2399-7532/aac322
Yap, H. K., Lim, J. H., Nasrallah, F., & Yeow, C.-H. (2017). Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00547
Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2019). Digital Light Processing Based Three-dimensional Printing for Medical Applications. International Journal of Bioprinting, 6(1), 1. https://doi.org/10.18063/ijb.v6i1.242
Zhou, W., Qiao, Z., Nazarzadeh Zare, E., Huang, J., Zheng, X., Sun, X., Shao, M., Wang, H., Wang, X., Chen, D., Zheng, J., Fang, S., Li, Y. M., Zhang, X., Yang, L., Makvandi, P., & Wu, A. (2020). 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. Journal of Medicinal Chemistry, 63(15), 8003–8024. https://doi.org/10.1021/acs.jmedchem.9b02115
Published
How to Cite
Issue
Section
Copyright (c) 2022 Jue Wang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.