The impact of development and application of soft material and novel actuators in soft robotics technology on future biomedical engineering

Authors

  • Jue Wang The Summit Country Day School

DOI:

https://doi.org/10.47611/jsrhs.v11i3.3818

Keywords:

Biomedical Engineering, Biomedical Application, Soft Robotics, Soft Actuation, Soft Material

Abstract

The goal of the robotics industry has been to build devices that mirror the remarkable powers of the human body ever since it was founded. In an attempt to emulate the compliance and deformability of genuine biological tissue, efforts have been made to construct actuators and electronics out of elastomers, textiles, and other soft materials as early as the 1940s. Since then, the field of soft robotics has advanced extraordinarily, with recent work concentrating on actuation, sensing, and application. In this review, recent advancement in the soft robotically field from the perspective of soft actuators, soft material, and biomedical application is highlighted. Soft actuators had gone decent development along with different advantages and setbacks. The need for chemistry and material science has been increasingly large in recent years and the material for 4D printing manufacturing is a major focus. Biomedical applications can be advanced by introducing soft robotics combined with existing technology. The biocompatibility issue is a major challenge to be faced, and perspectives on such regard will be discussed.

Downloads

Download data is not yet available.

References or Bibliography

Acome, E., Mitchell, S. K., Morrissey, T. G., Emmett, M. B., Benjamin, C., King, M., Radakovitz, M., & Keplinger, C. (2018). Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 359(6371), 61–65. https://doi.org/10.1126/science.aao6139

Agarwal, T., Hann, S. Y., Chiesa, I., Cui, H., Celikkin, N., Micalizzi, S., Barbetta, A., Costantini, M., Esworthy, T., Zhang, L. G., de Maria, C., & Maiti, T. K. (2021). 4D printing in biomedical applications: emerging trends and technologies. Journal of Materials Chemistry B, 9(37), 7608–7632. https://doi.org/10.1039/D1TB01335A

Bartlett, M. D., Kazem, N., Powell-Palm, M. J., Huang, X., Sun, W., Malen, J. A., & Majidi, C. (2017). High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proceedings of the National Academy of Sciences, 114(9), 2143–2148. https://doi.org/10.1073/pnas.1616377114

Boyraz, P., Runge, G., & Raatz, A. (2018). An overview of novel actuators for soft robotics. In High-Throughput (Vol. 7, Issue 3). MDPI AG. https://doi.org/10.3390/act7030048

Breger, J. C., Yoon, C., Xiao, R., Kwag, H. R., Wang, M. O., Fisher, J. P., Nguyen, T. D., & Gracias, D. H. (2015). Self-Folding Thermo-Magnetically Responsive Soft Microgrippers. ACS Applied Materials & Interfaces, 7(5), 3398–3405. https://doi.org/10.1021/am508621s

Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum Robots for Medical Applications: A Survey. IEEE Transactions on Robotics, 31(6), 1261–1280. https://doi.org/10.1109/TRO.2015.2489500

Carpi, F., Bauer, S., & de Rossi, D. (2010). Stretching Dielectric Elastomer Performance. Science, 330(6012), 1759–1761. https://doi.org/10.1126/science.1194773

Charalambides, A., & Bergbreiter, S. (2017). Rapid Manufacturing of Mechanoreceptive Skins for Slip Detection in Robotic Grasping. Advanced Materials Technologies, 2(1), 1600188. https://doi.org/10.1002/admt.201600188

Chen, Y., Chen, C., Rehman, H. U., Zheng, X., Li, H., Liu, H., & Hedenqvist, M. S. (2020). Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. Molecules, 25(18), 4246. https://doi.org/10.3390/molecules25184246

Cianchetti, M., Laschi, C., Menciassi, A., & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143–153. https://doi.org/10.1038/s41578-018-0022-y

Cohrs, N. H., Petrou, A., Loepfe, M., Yliruka, M., Schumacher, C. M., Kohll, A. X., Starck, C. T., Schmid Daners, M., Meboldt, M., Falk, V., & Stark, W. J. (2017). A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation. Artificial Organs, 41(10), 948–958. https://doi.org/10.1111/aor.12956

Comber, D. B., Slightam, J. E., Gervasi, V. R., Neimat, J. S., & Barth, E. J. (2016). Design, Additive Manufacture, and Control of a Pneumatic MR-Compatible Needle Driver. IEEE Transactions on Robotics, 32(1), 138–149. https://doi.org/10.1109/TRO.2015.2504981

Cui, H., Miao, S., Esworthy, T., Lee, S., Zhou, X., Hann, S. Y., Webster, T. J., Harris, B. T., & Zhang, L. G. (2019). A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research, 12(6), 1381–1388. https://doi.org/10.1007/s12274-019-2340-9

Delph, M. A., Fischer, S. A., Gauthier, P. W., Luna, C. H. M., Clancy, E. A., & Fischer, G. S. (2013). A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 1–7. https://doi.org/10.1109/ICORR.2013.6650426

Deng, H., Zhang, C., Su, J.-W., Xie, Y., Zhang, C., & Lin, J. (2018). Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. Journal of Materials Chemistry B, 6(34), 5415–5423. https://doi.org/10.1039/C8TB01285G

Diller, E., Giltinan, J., Lum, G. Z., Ye, Z., & Sitti, M. (2016). Six-degree-of-freedom magnetic actuation for wireless microrobotics. The International Journal of Robotics Research, 35(1–3), 114–128. https://doi.org/10.1177/0278364915583539

Diller, E., Miyashita, S., & Sitti, M. (2012). Remotely addressable magnetic composite micropumps. RSC Advances, 2(9), 3850. https://doi.org/10.1039/c2ra01318e

Ding, H., Zhang, X., Liu, Y., & Ramakrishna, S. (2019). Review of mechanisms and deformation behaviors in 4D printing. The International Journal of Advanced Manufacturing Technology, 105(11), 4633–4649. https://doi.org/10.1007/s00170-019-03871-3

Dolan, E. B., Varela, C. E., Mendez, K., Whyte, W., Levey, R. E., Robinson, S. T., Maye, E., O’Dwyer, J., Beatty, R., Rothman, A., Fan, Y., Hochstein, J., Rothenbucher, S. E., Wylie, R., Starr, J. R., Monaghan, M., Dockery, P., Duffy, G. P., & Roche, E. T. (2019). An actuatable soft reservoir modulates host foreign body response. Science Robotics, 4(33). https://doi.org/10.1126/scirobotics.aax7043

Dong, X., Xu, J., Xu, X., Dai, S., Zhou, X., Ma, C., Cheng, G., Yuan, N., & Ding, J. (2020). Sunlight-Driven Continuous Flapping-Wing Motion. ACS Applied Materials & Interfaces, 12(5), 6460–6470. https://doi.org/10.1021/acsami.9b20250

El-Atab, N., Mishra, R. B., Al-Modaf, F., Joharji, L., Alsharif, A. A., Alamoudi, H., Diaz, M., Qaiser, N., & Hussain, M. M. (2020). Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2(10), 2000128. https://doi.org/10.1002/aisy.202000128

Fassler, A., & Majidi, C. (2015). Liquid-Phase Metal Inclusions for a Conductive Polymer Composite. Advanced Materials, 27(11), 1928–1932. https://doi.org/10.1002/adma.201405256

Felton, S. M., Tolley, M. T., Shin, B., Onal, C. D., Demaine, E. D., Rus, D., & Wood, R. J. (2013). Self-folding with shape memory composites. Soft Matter, 9(32), 7688. https://doi.org/10.1039/c3sm51003d

Fusco, S., Sakar, M. S., Kennedy, S., Peters, C., Bottani, R., Starsich, F., Mao, A., Sotiriou, G. A., Pané, S., Pratsinis, S. E., Mooney, D., & Nelson, B. J. (2014). An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions. Advanced Materials, 26(6), 952–957. https://doi.org/10.1002/adma.201304098

Gordon, K. E., Sawicki, G. S., & Ferris, D. P. (2006). Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. Journal of Biomechanics, 39(10), 1832–1841. https://doi.org/10.1016/j.jbiomech.2005.05.018

Jeon, S.-J., Hauser, A. W., & Hayward, R. C. (2017). Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids. Accounts of Chemical Research, 50(2), 161–169. https://doi.org/10.1021/acs.accounts.6b00570

Jiang, H. Y., Kelch, S., & Lendlein, A. (2006). Polymers Move in Response to Light. Advanced Materials, 18(11), 1471–1475. https://doi.org/10.1002/adma.200502266

Kang, B. B., Lee, H., In, H., Jeong, U., Chung, J., & Cho, K.-J. (2016). Development of a polymer-based tendon-driven wearable robotic hand. 2016 IEEE International Conference on Robotics and Automation (ICRA), 3750–3755. https://doi.org/10.1109/ICRA.2016.7487562

Kawamura, T., Takanaka, K., Nakamura, T., & Osumi, H. (2013). Development of an orthosis for walking assistance using pneumatic artificial muscle: A quantitative assessment of the effect of assistance. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), 1–6. https://doi.org/10.1109/ICORR.2013.6650350

Knite, M., Teteris, V., Kiploka, A., & Kaupuzs, J. (2004). Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sensors and Actuators A: Physical, 110(1–3), 142–149. https://doi.org/10.1016/j.sna.2003.08.006

Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., Dunn, M. L., & Qi, H. J. (2019). Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 29(2), 1805290. https://doi.org/10.1002/adfm.201805290

Kularatne, R. S., Kim, H., Boothby, J. M., & Ware, T. H. (2017). Liquid crystal elastomer actuators: Synthesis, alignment, and applications. Journal of Polymer Science Part B: Polymer Physics, 55(5), 395–411. https://doi.org/10.1002/polb.24287

Kwon, G. H., Park, J. Y., Kim, J. Y., Frisk, M. L., Beebe, D. J., & Lee, S.-H. (2008). Biomimetic Soft Multifunctional Miniature Aquabots. Small, 4(12), 2148–2153. https://doi.org/10.1002/smll.200800315

Lendlein, A., & Kelch, S. (2002). Shape-Memory Polymers. Angewandte Chemie International Edition, 41(12), 2034. https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

Liu, L., Liu, M.-H., Deng, L.-L., Lin, B.-P., & Yang, H. (2017). Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property. Journal of the American Chemical Society, 139(33), 11333–11336. https://doi.org/10.1021/jacs.7b06410

Liu, X., Wei, R., Hoang, P. T., Wang, X., Liu, T., & Keller, P. (2015). Reversible and Rapid Laser Actuation of Liquid Crystalline Elastomer Micropillars with Inclusion of Gold Nanoparticles. Advanced Functional Materials, 25(20), 3022–3032. https://doi.org/10.1002/adfm.201500443

Loepfe, M., Schumacher, C. M., Lustenberger, U. B., & Stark, W. J. (2015). An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robotics, 2(1), 33–41. https://doi.org/10.1089/soro.2014.0021

Majidi, C. (2019). Soft-Matter Engineering for Soft Robotics. Advanced Materials Technologies, 4(2). https://doi.org/10.1002/admt.201800477

Malachowski, K., Breger, J., Kwag, H. R., Wang, M. O., Fisher, J. P., Selaru, F. M., & Gracias, D. H. (2014). Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angewandte Chemie International Edition, 53(31), 8045–8049. https://doi.org/10.1002/anie.201311047

Manto, M., Topping, M., Soede, M., Sanchez-Lacuesta, J., Harwin, W., Pons, J., Williams, J., Skaarup, S., & Normie, L. (2003). Dynamically responsive intervention for tremor suppression. IEEE Engineering in Medicine and Biology Magazine, 22(3), 120–132. https://doi.org/10.1109/MEMB.2003.1213635

Marchese, A. D., Katzschmann, R. K., & Rus, D. (2015). A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2(1), 7–25. https://doi.org/10.1089/soro.2014.0022

Marckmann, G., & Verron, E. (2006). Comparison of Hyperelastic Models for Rubber-Like Materials. Rubber Chemistry and Technology, 79(5), 835–858. https://doi.org/10.5254/1.3547969

Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

Menciassi, A., Moglia, A., Gorini, S., Pernorio, G., Stefanini, C., & Dario, P. (2005). Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract. Journal of Micromechanics and Microengineering, 15(11), 2045–2055. https://doi.org/10.1088/0960-1317/15/11/008

Miao, S., Cui, H., Nowicki, M., Xia, L., Zhou, X., Lee, S., Zhu, W., Sarkar, K., Zhang, Z., & Zhang, L. G. (2018). Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering. Advanced Biosystems, 2(9), 1800101. https://doi.org/10.1002/adbi.201800101

Mohd Jani, J., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

Mutlu, R., Alici, G., in het Panhuis, M., & Spinks, G. M. (2016). 3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers. Soft Robotics, 3(3), 120–133. https://doi.org/10.1089/soro.2016.0026

Otsuka, K., & Kakeshita, T. (2002). Science and Technology of Shape-Memory Alloys: New Developments. MRS Bulletin, 27(2), 91–100. https://doi.org/10.1557/mrs2002.43

Park, Y.-L., Chen, B., Pérez-Arancibia, N. O., Young, D., Stirling, L., Wood, R. J., Goldfield, E. C., & Nagpal, R. (2014). Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspiration & Biomimetics, 9(1), 016007. https://doi.org/10.1088/1748-3182/9/1/016007

Penumakala, P. K., Santo, J., & Thomas, A. (2020). A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering, 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336

Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M. C., & Dario, P. (2002). Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 49(6), 613–616. https://doi.org/10.1109/TBME.2002.1001976

R. K. Katzschmann, A. D. Marchese, & D. Rus. (2016). Springer Tracts in Advanced Robotics: Vol. Springer.

Ricotti, L., Trimmer, B., Feinberg, A. W., Raman, R., Parker, K. K., Bashir, R., Sitti, M., Martel, S., Dario, P., & Menciassi, A. (2017). Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2(12). https://doi.org/10.1126/scirobotics.aaq0495

Roseman, J. M., Lin, J., Ramakrishnan, S., Rosenstein, J. K., & Shepard, K. L. (2015). Hybrid integrated biological–solid-state system powered with adenosine triphosphate. Nature Communications, 6(1), 10070. https://doi.org/10.1038/ncomms10070

Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A., & Whitesides, G. M. (2013). Using Explosions to Power a Soft Robot. Angewandte Chemie International Edition, 52(10), 2892–2896. https://doi.org/10.1002/anie.201209540

Shian, S., & Clarke, D. R. (2016). Electrically-tunable surface deformation of a soft elastomer. Soft Matter, 12(13), 3137–3141. https://doi.org/10.1039/C6SM00090H

Shintake, J., Rosset, S., Schubert, B., Floreano, D., & Shea, H. (2016). Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Advanced Materials, 28(2), 231–238. https://doi.org/10.1002/adma.201504264

Small, I. W., Singhal, P., Wilson, T. S., & Maitland, D. J. (2010). Biomedical applications of thermally activated shape memory polymers. Journal of Materials Chemistry, 20(17), 3356. https://doi.org/10.1039/b923717h

Someya, Y., Omata, S., Hayakawa, T., Mitsuishi, M., Sugita, N., Harada, K., Noda, Y., Ueta, T., Totsuka, K., Araki, F., Aihara, H., & Arai, F. (2016). Training system using Bionic-eye for internal limiting membrane peeling. 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 1–3. https://doi.org/10.1109/MHS.2016.7824208

Sun, J.-Y., Keplinger, C., Whitesides, G. M., & Suo, Z. (2014). Ionic skin. Advanced Materials, 26(45), 7608–7614. https://doi.org/10.1002/adma.201403441

Sun, J.-Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133–136. https://doi.org/10.1038/nature11409

Wan, X., Luo, L., Liu, Y., & Leng, J. (2020). Direct Ink Writing Based 4D Printing of Materials and Their Applications. Advanced Science, 7(16), 2001000. https://doi.org/10.1002/advs.202001000

Wang, E., Desai, M. S., & Lee, S.-W. (2013). Light-Controlled Graphene-Elastin Composite Hydrogel Actuators. Nano Letters, 13(6), 2826–2830. https://doi.org/10.1021/nl401088b

Wehner, M., Quinlivan, B., Aubin, P. M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., & Walsh, C. (2013). A lightweight soft exosuit for gait assistance. 2013 IEEE International Conference on Robotics and Automation, 3362–3369. https://doi.org/10.1109/ICRA.2013.6631046

Whitesides, G. M. (2018). Soft-Robotik. Angewandte Chemie, 130(16), 4336–4353. https://doi.org/10.1002/ange.201800907

Whitney, R. J. (1953). The measurement of volume changes in human limbs. The Journal of Physiology, 121(1), 1–27. https://doi.org/10.1113/jphysiol.1953.sp004926

Wu, J., Zhao, Z., Kuang, X., Hamel, C. M., Fang, D., & Qi, H. J. (2018). Reversible shape change structures by grayscale pattern 4D printing. Multifunctional Materials, 1(1), 015002. https://doi.org/10.1088/2399-7532/aac322

Yap, H. K., Lim, J. H., Nasrallah, F., & Yeow, C.-H. (2017). Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00547

Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2019). Digital Light Processing Based Three-dimensional Printing for Medical Applications. International Journal of Bioprinting, 6(1), 1. https://doi.org/10.18063/ijb.v6i1.242

Zhou, W., Qiao, Z., Nazarzadeh Zare, E., Huang, J., Zheng, X., Sun, X., Shao, M., Wang, H., Wang, X., Chen, D., Zheng, J., Fang, S., Li, Y. M., Zhang, X., Yang, L., Makvandi, P., & Wu, A. (2020). 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. Journal of Medicinal Chemistry, 63(15), 8003–8024. https://doi.org/10.1021/acs.jmedchem.9b02115

Published

08-31-2022

How to Cite

Wang, J. (2022). The impact of development and application of soft material and novel actuators in soft robotics technology on future biomedical engineering. Journal of Student Research, 11(3). https://doi.org/10.47611/jsrhs.v11i3.3818

Issue

Section

HS Review Articles