Deficiency of the ATP Synthase Caused by nt 8993 Mutation and its Impact on Human Health
DOI:
https://doi.org/10.47611/jsrhs.v11i4.3610Keywords:
Mitochondria, mutation, leigh syndrome, heteroplasmyAbstract
The ATP synthase in mitochondria was responsible for the synthesis of ATP to provide chemical energy for the cell to achieve metabolism. The point mutation at the mitochondrial DNA nt 8993(T>C and T>G) disrupted the normal cellular mechanism of the ATP synthase, causing a deficiency in the production of ATP synthesis. The mitochondrial nt 8993 mutation causes a replacement of leucine amino acid with an arginine(aL156R), changing the sequence of the mitochondrial ATP6 gene, which causes an inefficiency in the c-subunit of the ATP synthase. The potential effect of the nt 8993 mutation can be expressed in Leigh syndrome, which exhibited in neurologic weakness, ataxia, and retinitis pigmentosa. In this review, we will go over the structure of the ATP synthase, mechanism of the mitochondrial nt 8993 mutation, and potential cellular mechanisms to eliminate the mutation.
Downloads
References or Bibliography
Ashrafi, G., & Schwarz, T. L. (2012). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death & Differentiation, 20(1), 31–42. https://doi.org/10.1038/cdd.2012.81
Baracca, A., Barogi, S., Carelli, V., Lenaz, G., & Solaini, G. (2000). Catalytic activities of mitochondrial ATP synthase in patients with mitochondrial DNA T8993G mutation in the atpase 6 gene encoding subunit a. Journal of Biological Chemistry, 275(6), 4177–4182. https://doi.org/10.1074/jbc.275.6.4177
Baracca, A., Sgarbi, G., Mattiazzi, M., Casalena, G., Pagnotta, E., Valentino, M. L., Moggio, M., Lenaz, G., Carelli, V., & Solaini, G. (2007). Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at NT8993. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1767(7), 913–919. https://doi.org/10.1016/j.bbabio.2007.05.005
Boyer, P. D. (1997). The ATP synthase—a splendid molecular machine. Annual Review of Biochemistry, 66(1), 717–749. https://doi.org/10.1146/annurev.biochem.66.1.717
Cortés-Hernández, P., Vázquez-Memije, M. E., & García, J. J. (2007). ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization. Journal of Biological Chemistry, 282(2), 1051–1058. https://doi.org/10.1074/jbc.m606828200
Fassone, E., & Rahman, S. (2012). Complex I deficiency: Clinical features, biochemistry and molecular genetics. Journal of Medical Genetics, 49(9), 578–590. https://doi.org/10.1136/jmedgenet-2012-101159
Houštek, J., Klement, P., Hermanska, J., Houšťková, H., Hansíková, H., Van den Bogert, C., & Zeman, J. (1995). Altered properties of mitochondrial ATP-synthase in patients with a T → G mutation in the atpase 6 (subunit a) gene at position 8993 of mtdna. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1271(2-3), 349–357. https://doi.org/10.1016/0925-4439(95)00063-a
Jonckheere, A. I., Smeitink, J. A., & Rodenburg, R. J. (2011). Mitochondrial ATP synthase: Architecture, function and pathology. Journal of Inherited Metabolic Disease, 35(2), 211–225. https://doi.org/10.1007/s10545-011-9382-9
Mizushima, N., & Komatsu, M. (2011). Autophagy: Renovation of cells and tissues. Cell, 147(4), 728–741. https://doi.org/10.1016/j.cell.2011.10.026
Nijtmans, L. G. J., Henderson, N. S., Attardi, G., & Holt, I. J. (2001). Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene. Journal of Biological Chemistry, 276(9), 6755–6762. https://doi.org/10.1074/jbc.m008114200
Ozawa, T., Tanaka, M., Suzuki, H., & Nishikimi, M. (1987). Structure and function of mitochondria: Their organization and disorders. Brain and Development, 9(2), 76–81. https://doi.org/10.1016/s0387-7604(87)80021-9
Parsons, M. J., & Green, D. R. (2010). Mitochondria in cell death. Essays in Biochemistry, 47, 99–114. https://doi.org/10.1042/bse0470099
Santorelli, F. M., Shanske, S., Macaya, A., DeVivo, D. C., & DiMauro, S. (1993). The mutation at NT 8993 of mitochondrial DNA is a common cause of Leigh's syndrome. Annals of Neurology, 34(6), 827–834. https://doi.org/10.1002/ana.410340612
Saraste, M. (1999). Oxidative phosphorylation at the fin de siècle. Science, 283(5407), 1488–1493. https://doi.org/10.1126/science.283.5407.1488
Sgarbi, G., Baracca, A., Lenaz, G., Valentino, L. M., Carelli, V., & Solaini, G. (2006). Inefficient coupling between Proton Transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtdna. Biochemical Journal, 395(3), 493–500. https://doi.org/10.1042/bj20051748
Su, X., Dautant, A., Rak, M., Godard, F., Ezkurdia, N., Bouhier, M., Bietenhader, M., Mueller, D. M., Kucharczyk, R., di Rago, J.-P., & Tribouillard-Tanvier, D. (2021). The pathogenic M.8993 T > G mutation in mitochondrial atp6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Human Molecular Genetics, 30(5), 381–392. https://doi.org/10.1093/hmg/ddab043
Published
How to Cite
Issue
Section
Copyright (c) 2022 Bohan Zhang
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.