Probability of life on Mars utilizing biosignatures
DOI:
https://doi.org/10.47611/jsrhs.v11i4.3572Keywords:
#biosignatures, #Mars, #astrobiologyAbstract
Biosignatures are key pieces of evidence of life on other planets, in this research paper we will be focusing specifically on Mars. This paper compiles research from other papers and highlights probabilities and improbabilities of life from data on Mars and terrestrial analogs on Earth. Hydrated areas likely to have liquid water exhibit a correlation with life as liquid water is commonly thought to be the “key” to an organism's survival. Analogs on Earth may also simulate similar conditions to that of Mars and illustrate various life forms that have inhabited these areas. Sources of energy observed in these analogs as well as Mars can be conducive to life. However, just because an environment is habitable does not mean life inhabited it. The paper also compares false biosignatures which may be misleading about the presence of life. The importance of this paper is to address the ambiguity and presence of microbial life on Mars.
Downloads
References or Bibliography
Amils, R., Fernández-Remolar, D., & The IPBSL Team. (2014). Rio Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4(3), 511-534. https://doi.org/10.3390/life4030511
Azua-Bustos, A., Fairén, A. G., Silva, C. G., Carrizo, D., Fernández-Martínez, M. Á., Arenas-Fajardo, C., Fernández-Sampedro, M., Gil-Lozano, C., Sánchez-García, L., Ascaso, C., Wierzchos, J., & Rampe, E. B. (2020). Inhabited subsurface wet smectites in the hyperarid core of the Atacama desert as an analog for the search for life on Mars. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-76302-z
Becker, L., Popp, B., Rust, T., & Bada, J. L. (1999). The origin of organic matter in the Martian meteorite ALH84001. Advances in Space Research, 24(4), 477-488. https://doi.org/10.1016/s0273-1177(99)00090-3
Carroll, B., Blake, G., Remijan, A., Jewell, P., Finneran, I., Loomis, R., & McGuire, B. (2016). Discovery of the first interstellar chiral molecule: Propylene oxide. Proceedings of the 71st International Symposium on Molecular Spectroscopy, 352(6292), 1449-1451. https://doi.org/10.15278/isms.2016.wh06
Clark, B. C., Kolb, V. M., Steele, A., House, C. H., Lanza, N. L., Gasda, P. J., VanBommel, S. J., Newsom, H. E., & Martínez-Frías, J. (2021). Origin of life on Mars: Suitability and opportunities. Life, 11(6), 539. https://doi.org/10.3390/life11060539
Cockell, C. S. (2014). Trajectories of Martian Habitability. Astrobiology, 14(2), 182-203. https://doi.org/10.1089/ast.2013.1106
Curiosity Finds Hydrogen-Rich Area of Mars Subsurface. (2015, August 19). NASA. https://www.nasa.gov/jpl/msl/pia19809/curiosity-finds-hydrogen-rich-area-of-mars-subsurface
Des Marais, D. J., Allamandola, L. J., Benner, S. A., Boss, A. P., Deamer, D., Falkowski, P. G., Farmer, J. D., Hedges, S. B., Jakosky, B. M., Knoll, A. H., Liskowsky, D. R., Meadows, V. S., Meyer, M. A., Pilcher, C. B., Nealson, K. H., Spormann, A. M., Trent, J. D., Turner, W. W., Woolf, N. J., … Yorke, H. W. (2003). The NASA Astrobiology Roadmap. Astrobiology, 3(2), 219-235. https://doi.org/10.1089/153110703769016299
Eberswalde crater. (n.d.). Marspedia. https://marspedia.org/Eberswalde_Crater
Franz, H. B., King, P. L., & Gaillard, F. (2019). Sulfur on Mars from the atmosphere to the core. Volatiles in the Martian Crust, 119-183. https://doi.org/10.1016/b978-0-12-804191-8.00006-4
Gibson, Jr., E. K., McKay, D. S., Clemett, S. J., Thomas-Keprta, K. L., Wentworth, S. J., Robert, F., Verchovsky, A. B., Wright, I. P., Pillinger, C. T., Rice, T., Van Leer, B., Meibom, A., Mostefaoui, S. M., & Le, L. (2006). Identification and analysis of carbon-bearing phases in the Martian meteorite Nakhla. SPIE Proceedings. https://doi.org/10.1117/12.690503
Glavin, D. P., Elsila, J. E., McLain, H. L., Aponte, J. C., Parker, E. T., Dworkin, J. P., Hill, D. H., Connolly, H. C., & Lauretta, D. S. (2020). Extraterrestrial amino acids and L‐enantiomeric excesses in the CM 2 carbonaceous chondrites Aguas Zarcas and Murchison. Meteoritics & Planetary Science, 56(1), 148-173. https://doi.org/10.1111/maps.13451
Greenwood, J. P., & Blake, R. E. (2006). Evidence for an acidic ocean on Mars from phosphorus geochemistry of Martian soils and rocks. Geology, 34(11), 953. https://doi.org/10.1130/g22415a.1
Greshko, M. (2019, November 18). Mysterious oxygen spike seen on Mars puzzles scientists. National Geographic. https://www.nationalgeographic.com/science/article/mysterious-oxygen-spike-seen-on-mars-puzzles-scientists
Gronstal, A. (2020, April 9). NASA Astrobiology. Astrobiology. https://astrobiology.nasa.gov/news/serpenitinzation-and-astrobiological-potential-of-the-mars-2020-landing-site/
Hays, L. E., Graham, H. V., Des Marais, D. J., Hausrath, E. M., Horgan, B., McCollom, T. M., Parenteau, M. N., Potter-McIntyre, S. L., Williams, A. J., & Lynch, K. L. (2017). Biosignature preservation and detection in Mars analog environments. Astrobiology, 17(4), 363-400. https://doi.org/10.1089/ast.2016.1627
Inverted dendritic stream channels in Antoniadi crater (PSP_007095_2020). (n.d.). HiRISE | High Resolution Imaging Science Experiment. https://hirise.lpl.arizona.edu/PSP_007095_2020
Krissansen-Totton, J., Bergsman, D. S., & Catling, D. C. (2016). On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology, 16(1), 39-67. https://doi.org/10.1089/ast.2015.1327
Michalski, J. R., Dobrea, E. Z., Niles, P. B., & Cuadros, J. (2017). Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nature Communications, 8(1). https://doi.org/10.1038/ncomms15978
Milliken, R. E. (2008, October). Which Clays are Really Present on Mars and How Did They Form? Lunar and Planetary Institute. https://www.lpi.usra.edu/meetings/aqueous2008/pdf/7009.pdf
Misra, A. K., Acosta-Maeda, T. E., Scott, E. R., & Sharma, S. K. (2014). Possible mechanism for explaining the origin and size distribution of Martian hematite spherules. Planetary and Space Science, 92, 16-23. https://doi.org/10.1016/j.pss.2014.01.020
Morgan, A., Howard, A., Hobley, D., Moore, J., Dietrich, W., Williams, R., Burr, D., Grant, J., Wilson, S., & Matsubara, Y. (2014). Sedimentology and climatic environment of alluvial fans in the Martian Saheki crater and a comparison with terrestrial fans in the Atacama desert. Icarus, 229, 131-156. https://doi.org/10.1016/j.icarus.2013.11.007
Nazari-Sharabian, M., Aghababaei, M., Karakouzian, M., & Karami, M. (2020). Water on Mars—A literature review. Galaxies, 8(2), 40. https://doi.org/10.3390/galaxies8020040
Terra Sirenum. (n.d.). Marspedia. https://marspedia.org/Terra_Sirenum
Wall, M. (2015, March 23). More ingredients for life identified on Mars. Space.com. https://www.space.com/28899-mars-life-nitrogen-carbon-monoxide.html
Wallis, J., Wickramasinghe, N. C., Wallis, D. H., Miyake, N., Wallis, M. K., Di Gregorio, B., & Hoover, R. (2012). Possible biological structures in the Tissint Mars meteorite. SPIE Proceedings. https://doi.org/10.1117/12.2013827
Whitt, K. K. (2022, January 21). Scientists find carbon-12, life’s most crucial isotope, on Mars. EarthSky | Updates on your cosmos and world. https://earthsky.org/space/scientists-find-carbon-12-13-isotope-on-mars/
Wogan, N. F., & Catling, D. C. (2020). When is chemical disequilibrium in earth-like planetary atmospheres a Biosignature versus an anti-biosignature? Disequilibria from dead to living worlds. The Astrophysical Journal, 892(2), 127. https://doi.org/10.3847/1538-4357/ab7b81
Wordsworth, R. D. (2021). Modeling terrestrial planetary atmospheres. Encyclopedia of Astrobiology, 1-15. https://doi.org/10.1007/978-3-642-27833-4_5442-1
Published
How to Cite
Issue
Section
Copyright (c) 2022 Divya Krishna; Coach Jo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.