Probability of life on Mars utilizing biosignatures

Authors

  • Divya Krishna Gifted Gabber
  • Coach Jo Gifted Gabber

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3572

Keywords:

#biosignatures, #Mars, #astrobiology

Abstract

Biosignatures are key pieces of evidence of life on other planets, in this research paper we will be focusing specifically on Mars. This paper compiles research from other papers and highlights probabilities and improbabilities of life from data on Mars and terrestrial analogs on Earth. Hydrated areas likely to have liquid water exhibit a correlation with life as liquid water is commonly thought to be the “key” to an organism's survival. Analogs on Earth may also simulate similar conditions to that of Mars and illustrate various life forms that have inhabited these areas. Sources of energy observed in these analogs as well as Mars can be conducive to life. However, just because an environment is habitable does not mean life inhabited it. The paper also compares false biosignatures which may be misleading about the presence of life. The importance of this paper is to address the ambiguity and presence of microbial life on Mars.

Downloads

Download data is not yet available.

References or Bibliography

Amils, R., Fernández-Remolar, D., & The IPBSL Team. (2014). Rio Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4(3), 511-534. https://doi.org/10.3390/life4030511

Azua-Bustos, A., Fairén, A. G., Silva, C. G., Carrizo, D., Fernández-Martínez, M. Á., Arenas-Fajardo, C., Fernández-Sampedro, M., Gil-Lozano, C., Sánchez-García, L., Ascaso, C., Wierzchos, J., & Rampe, E. B. (2020). Inhabited subsurface wet smectites in the hyperarid core of the Atacama desert as an analog for the search for life on Mars. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-76302-z

Becker, L., Popp, B., Rust, T., & Bada, J. L. (1999). The origin of organic matter in the Martian meteorite ALH84001. Advances in Space Research, 24(4), 477-488. https://doi.org/10.1016/s0273-1177(99)00090-3

Carroll, B., Blake, G., Remijan, A., Jewell, P., Finneran, I., Loomis, R., & McGuire, B. (2016). Discovery of the first interstellar chiral molecule: Propylene oxide. Proceedings of the 71st International Symposium on Molecular Spectroscopy, 352(6292), 1449-1451. https://doi.org/10.15278/isms.2016.wh06

Clark, B. C., Kolb, V. M., Steele, A., House, C. H., Lanza, N. L., Gasda, P. J., VanBommel, S. J., Newsom, H. E., & Martínez-Frías, J. (2021). Origin of life on Mars: Suitability and opportunities. Life, 11(6), 539. https://doi.org/10.3390/life11060539

Cockell, C. S. (2014). Trajectories of Martian Habitability. Astrobiology, 14(2), 182-203. https://doi.org/10.1089/ast.2013.1106

Curiosity Finds Hydrogen-Rich Area of Mars Subsurface. (2015, August 19). NASA. https://www.nasa.gov/jpl/msl/pia19809/curiosity-finds-hydrogen-rich-area-of-mars-subsurface

Des Marais, D. J., Allamandola, L. J., Benner, S. A., Boss, A. P., Deamer, D., Falkowski, P. G., Farmer, J. D., Hedges, S. B., Jakosky, B. M., Knoll, A. H., Liskowsky, D. R., Meadows, V. S., Meyer, M. A., Pilcher, C. B., Nealson, K. H., Spormann, A. M., Trent, J. D., Turner, W. W., Woolf, N. J., … Yorke, H. W. (2003). The NASA Astrobiology Roadmap. Astrobiology, 3(2), 219-235. https://doi.org/10.1089/153110703769016299

Eberswalde crater. (n.d.). Marspedia. https://marspedia.org/Eberswalde_Crater

Franz, H. B., King, P. L., & Gaillard, F. (2019). Sulfur on Mars from the atmosphere to the core. Volatiles in the Martian Crust, 119-183. https://doi.org/10.1016/b978-0-12-804191-8.00006-4

Gibson, Jr., E. K., McKay, D. S., Clemett, S. J., Thomas-Keprta, K. L., Wentworth, S. J., Robert, F., Verchovsky, A. B., Wright, I. P., Pillinger, C. T., Rice, T., Van Leer, B., Meibom, A., Mostefaoui, S. M., & Le, L. (2006). Identification and analysis of carbon-bearing phases in the Martian meteorite Nakhla. SPIE Proceedings. https://doi.org/10.1117/12.690503

Glavin, D. P., Elsila, J. E., McLain, H. L., Aponte, J. C., Parker, E. T., Dworkin, J. P., Hill, D. H., Connolly, H. C., & Lauretta, D. S. (2020). Extraterrestrial amino acids and L‐enantiomeric excesses in the CM 2 carbonaceous chondrites Aguas Zarcas and Murchison. Meteoritics & Planetary Science, 56(1), 148-173. https://doi.org/10.1111/maps.13451

Greenwood, J. P., & Blake, R. E. (2006). Evidence for an acidic ocean on Mars from phosphorus geochemistry of Martian soils and rocks. Geology, 34(11), 953. https://doi.org/10.1130/g22415a.1

Greshko, M. (2019, November 18). Mysterious oxygen spike seen on Mars puzzles scientists. National Geographic. https://www.nationalgeographic.com/science/article/mysterious-oxygen-spike-seen-on-mars-puzzles-scientists

Gronstal, A. (2020, April 9). NASA Astrobiology. Astrobiology. https://astrobiology.nasa.gov/news/serpenitinzation-and-astrobiological-potential-of-the-mars-2020-landing-site/

Hays, L. E., Graham, H. V., Des Marais, D. J., Hausrath, E. M., Horgan, B., McCollom, T. M., Parenteau, M. N., Potter-McIntyre, S. L., Williams, A. J., & Lynch, K. L. (2017). Biosignature preservation and detection in Mars analog environments. Astrobiology, 17(4), 363-400. https://doi.org/10.1089/ast.2016.1627

Inverted dendritic stream channels in Antoniadi crater (PSP_007095_2020). (n.d.). HiRISE | High Resolution Imaging Science Experiment. https://hirise.lpl.arizona.edu/PSP_007095_2020

Krissansen-Totton, J., Bergsman, D. S., & Catling, D. C. (2016). On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology, 16(1), 39-67. https://doi.org/10.1089/ast.2015.1327

Michalski, J. R., Dobrea, E. Z., Niles, P. B., & Cuadros, J. (2017). Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nature Communications, 8(1). https://doi.org/10.1038/ncomms15978

Milliken, R. E. (2008, October). Which Clays are Really Present on Mars and How Did They Form? Lunar and Planetary Institute. https://www.lpi.usra.edu/meetings/aqueous2008/pdf/7009.pdf

Misra, A. K., Acosta-Maeda, T. E., Scott, E. R., & Sharma, S. K. (2014). Possible mechanism for explaining the origin and size distribution of Martian hematite spherules. Planetary and Space Science, 92, 16-23. https://doi.org/10.1016/j.pss.2014.01.020

Morgan, A., Howard, A., Hobley, D., Moore, J., Dietrich, W., Williams, R., Burr, D., Grant, J., Wilson, S., & Matsubara, Y. (2014). Sedimentology and climatic environment of alluvial fans in the Martian Saheki crater and a comparison with terrestrial fans in the Atacama desert. Icarus, 229, 131-156. https://doi.org/10.1016/j.icarus.2013.11.007

Nazari-Sharabian, M., Aghababaei, M., Karakouzian, M., & Karami, M. (2020). Water on Mars—A literature review. Galaxies, 8(2), 40. https://doi.org/10.3390/galaxies8020040

Terra Sirenum. (n.d.). Marspedia. https://marspedia.org/Terra_Sirenum

Wall, M. (2015, March 23). More ingredients for life identified on Mars. Space.com. https://www.space.com/28899-mars-life-nitrogen-carbon-monoxide.html

Wallis, J., Wickramasinghe, N. C., Wallis, D. H., Miyake, N., Wallis, M. K., Di Gregorio, B., & Hoover, R. (2012). Possible biological structures in the Tissint Mars meteorite. SPIE Proceedings. https://doi.org/10.1117/12.2013827

Whitt, K. K. (2022, January 21). Scientists find carbon-12, life’s most crucial isotope, on Mars. EarthSky | Updates on your cosmos and world. https://earthsky.org/space/scientists-find-carbon-12-13-isotope-on-mars/

Wogan, N. F., & Catling, D. C. (2020). When is chemical disequilibrium in earth-like planetary atmospheres a Biosignature versus an anti-biosignature? Disequilibria from dead to living worlds. The Astrophysical Journal, 892(2), 127. https://doi.org/10.3847/1538-4357/ab7b81

Wordsworth, R. D. (2021). Modeling terrestrial planetary atmospheres. Encyclopedia of Astrobiology, 1-15. https://doi.org/10.1007/978-3-642-27833-4_5442-1

Published

11-30-2022

How to Cite

Krishna, D., & Kethar, J. (2022). Probability of life on Mars utilizing biosignatures. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3572

Issue

Section

HS Research Articles