Metal Ion Sensing by BAPTA: Investigation Using 1H NMR Spectroscopy
DOI:
https://doi.org/10.47611/jsrhs.v11i4.3515Keywords:
Metal Ions, BAPTA, 1H-NMR, ChelatorAbstract
Many biological macromolecules rely on metal ions to maintain structural integrity and control their regulatory function. In biological fluids, detection and identification of metal ions requires sensitive analytical tools with clear readouts. In this work, we sought to investigate the potential of solution Nuclear Magnetic Resonance (NMR) spectroscopy to analyze metal ion solutions and mixtures. To enable 1H NMR detection, we prepared the complexes of eight metal ions with the chelating agent, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The 1H NMR spectra were collected for BAPTA samples as a function of metal ion concentrations. The analysis of NMR data revealed that all metal ions with a notable exception of Mg2+ bind BAPTA with high affinities and form complexes with 1:1 metal-to-chelator stoichiometry. Both methylene and aromatic regions of the BAPTA 1H NMR spectra experience significant changes upon the metal ion complex formation. We identified the spectroscopic signatures of trivalent and paramagnetic ions and demonstrated that the binary Zn2+/Pb2+ metal ion mixture can be successfully analyzed by NMR. We conclude that complexation with BAPTA followed by the 1H NMR analysis is a sensitive method to detect and identify both nutritive and xenobiotic metal ions.
Downloads
References or Bibliography
Blanusa, M., Varnai, V. M., Piasek, M., & Kostial, K. (2005). Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Current Medicinal Chemistry, 12(23), 2771-2794. http://dx.doi.org/10.2174/092986705774462987
Bootman, M. D., Allman, S., Rietdorfa, K., Bultynck, G. (2018) Cell Calcium (73) 82–87.
Britigan, B. E., Rasmussen, G. T., Cox, C. D. (1998). Binding of Iron and Inhibition of Iron-Dependent Oxidative Cell Injury by the “Calcium Chelator” 1,2-Bis(2-Aminophenoxy)Ethane N,N,N′,N′-tetraacetic Acid (BAPTA). Biochemical Pharmacology, 55, 287–295. https://doi.org/10.1016/S0006-2952(97)00463-2
Collatz, M.B., Rudel, R., & Brinkmeier, H. (1997). Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses. Cell Calcium, 21(6), 453-459. https://doi.org/10.1016/S0143-4160(97)90056-7
Flora, S. J.S., & Pachauri, V. (2010). Chelation in Metal Intoxication. International Journal of Environmental Research and Public Health, 7(7), 2745-2788. https://doi.org/10.3390%2Fijerph7072745
Garza-Lombo, C., Posadas, Y., Quintanar, L., Gonsebatt, M. E., & Franco, R. (2018). Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxidants & Redox Signaling, 28(18), 1669-1703. https://doi.org/10.1089%2Fars.2017.7272
Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health, 17(3), Jacobs, D. E., Clickner, R. P., Zhou, J. Y., Viet, S. M., Marker, D. A., Rogers, J. W., Zeldin, D. C., Broene, P., & Friedman, W. (n.d.). The prevalence of lead-based paint hazards in U.S. housing. Environmental Health Perspectives, 110(10), A599-A606. https://doi.org/10.1289%2Fehp.021100599
Hwang, T.-L., Shaka, A.J. (1995) J. Magn. Reson., ; 112 275-279
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009
Jing, Z. C., Qi, L. R. and Ren, P (2018), Many-body effect determines the selectivity for Ca2+and Mg2+in proteins https://doi.org/10.3390/ijerph17030679
Proceedings of the National Academy of Sciences USA vol. 115 E7495–E7501
Kontoghiorghes, G. J. (2020). Advances on Chelation and Chelator Metal Complexes in Medicine. International Journal of Molecular Sciences, 21(7), 2499.https://doi.org/10.3390%2Fijms21072499
Landrigan, P. J., & Todd, A. C. (n.d.). Lead Poisoning. The Western Journal of Medicine, 161(2), 153-159. https://pubmed.ncbi.nlm.nih.gov/7941534/
Mayo Clinic. (2022, March 23). Hypercalcemia - Symptoms and causes. Mayo Clinic. Retrieved August 2, 2022, from https://www.mayoclinic.org/diseases-conditions/hypercalcemia/symptoms-causes/syc-20355523
Moustakas, M. (2021). The Role of Metal Ions in Biology, Biochemistry and Medicine. Materials, 14(3), 549. https://doi.org/10.3390/ma14030549
Parrish, A. R., & Wang, L. (2010). Genetic Incorporation of Unnatural Amino Acids into Proteins. Comprehensive Natural Products II, 5(1), 587-617. https://doi.org/10.1016/B978-008045382-8.00694-8
Schanne, F. a., Dowd, T. l., Gupta, R. K., & Rosen, J. f. (1990). Development of 19F NMR for measurement of [Ca2+]i and [Pb2+]i in cultured osteoblastic bone cells. Environmental Health Perspectives, 84(1), 99-106. https://doi.org/10.1289%2Fehp.908499
Tsien, R. Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry, 19(11), 2396-2404. https://doi.org/10.1021/bi00552a018
Zhou, X., Belavek, K. J., & Miller, E. W. (2021). Origins of Ca2+ Imaging with Fluorescent Indicators. Biochemistry, 60(46), 3547-3554. https://doi.org/10.1021/acs.biochem.1c00350.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Sunayna Adoni; Trivikram Mologu, Tatyana Igumenova
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.