Analysis On The Impact of Human-Induced Pollutants On River Microbiology
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3498Keywords:
16s rRNA Sequencing, Metagenome Analysis, Gene Prediction, Human Impact, PollutantsAbstract
In recent decades, water quality and contaminant concentrations have been tightly regulated by relevant laws and monitoring. However, detailed microbial composition in different environments and their interactions with human activities has yet to be fully characterized. This paper shows how different environments, including city environments and highways, can affect the properties of water bodies closely associated with them geographically. Two pairs of locations along Schuylkill and Wissahickon river were sampled. Through 16s rRNA metagenomic diversity sequencing and a functional gene prediction approach, the taxonomic and predicted gene profiles of
samples from various locations were elucidated. Through comparative study of these samples, the effect of human
activity on the river between the locations were evaluated. In the Wissahickon river, metagenome analysis
indicates that human-induced pollutants potentially fostered the growth of bacteria that are able to utilize them, but
suggests no increment of genes’ abundance that resist their damaging effects, such as heavy metals exporting
ATPase, and various antibiotic resistance genes. In the Schuylkill river, the analysis indicates that the growth of the
aforementioned bacteria is insignificant, and the resistance genes were predicted to decrease in the urban area
where it was anticipated to receive more influence from human activities, rendering the result inconclusive. We
anticipate that this study will become the starting point for future research on microbial populations in water bodies
so that the dynamics of how human activities influence river microbiology can be determined more clearly.
Downloads
References or Bibliography
Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003). "Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer". Applied and Environmental Microbiology. 69 (10): 5884–91. Bibcode:2003ApEnM..69.5884A. doi:10.1128/aem.69.10.5884-5891.2003. PMC 201226. PMID 14532040.
Barbera, P., Kozlov, A. M., Czech, L., Morel, B., Darriba, D., Flouri, T., & Stamatakis, A. (2018). EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences. In D. Posada (Ed.), Systematic Biology (Vol. 68, Issue 2, pp. 365–369). Oxford University Press (OUP). https://doi.org/10.1093/sysbio/syy054
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, and Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
Childers, Susan (2002). "Geobacter metallireducens accesses insoluble Fe (III) oxide by chemotaxis". Nature. 416 (6882): 767–769. Bibcode:2002Natur.416..767C. doi:10.1038/416767a. PMID 11961561. S2CID 2967856.
Czech, L., Barbera, P., & Stamatakis, A. (2020). Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. In R. Schwartz (Ed.), Bioinformatics (Vol. 36, Issue 10, pp. 3263–3265). Oxford University Press (OUP). https://doi.org/10.1093/bioinformatics/btaa070
Douglas, G.M., Maffei, V.J., Zaneveld, J.R. et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38, 685–688 (2020). https://doi.org/10.1038/s41587-020-0548-6
Egorov, A. M., Ulyashova, M. M., & Rubtsova, M. Y. (2018). Bacterial Enzymes and Antibiotic Resistance. Acta naturae, 10(4), 33–48.
Ekwanzala, M. D., Dewar, J. B., & Momba, M. N. B. (2020). Environmental resistome risks of wastewaters and aquatic environments deciphered by shotgun metagenomic assembly. Ecotoxicology and Environmental Safety, 197, 110612. doi:10.1016/j.ecoenv.2020.110612
Fauque, G. D., & Barton, L. L. (2012). Hemoproteins in Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. Advances in Microbial Physiology Volume 60, 1–90. doi:10.1016/b978-0-12-398264-3.00001-2
Lens, P. (2009). Sulfur Cycle. Encyclopedia of Microbiology, 361–369. doi:10.1016/b978-012373944-5.00057-2
Louca, S., & Doebeli, M. (2017). Efficient comparative phylogenetics on large trees. In A. Valencia (Ed.), Bioinformatics (Vol. 34, Issue 6, pp. 1053–1055). Oxford University Press (OUP). https://doi.org/10.1093/bioinformatics/btx701
Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., … Nevin, K. P. (2011). Geobacter. Advances in Microbial Physiology, 1–100. doi:10.1016/b978-0-12-387661-4.00004-5
Mehrshad, M., Amoozegar, M. A., Ghai, R., Shahzadeh Fazeli, S. A., & Rodriguez-Valera, F. (2016). Genome Reconstruction from Metagenomic Data Sets Reveals Novel Microbes in the Brackish Waters of the Caspian Sea. Applied and environmental microbiology, 82(5), 1599–1612. https://doi.org/10.1128/AEM.03381-15
Ng, C., Tay, M., Tan, B., Le, T.-H., Haller, L., Chen, H., … Gin, K. Y.-H. (2017). Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02200
Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2-3), 313–339. doi:10.1016/s0168-6445(03)00048-2
Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial informatics and experimentation, 2(1), 3. https://doi.org/10.1186/2042-5783-2-3C3351745/
Ward, O. P., Singh, A., Van Hamme, J. D., & Voordouw, G. (2009). Petroleum Microbiology. Encyclopedia of Microbiology, 443–456. doi:10.1016/b978-012373944-5.00171-1
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dechloromonas
White, G. F., Edwards, M. J., Gomez-Perez, L., Richardson, D. J., Butt, J. N., & Clarke, T. A. (2016). Mechanisms of Bacterial Extracellular Electron Exchange. Advances in Microbial Physiology, 87–138. doi:10.1016/bs.ampbs.2016.02.002
Published
How to Cite
Issue
Section
Copyright (c) 2022 Shangchen Cai
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.