Mechanisms of Aging from a Genetic, Molecular and Lifestyle Perspective.

Authors

  • Alex Zheng Stuyvesant High School

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3467

Keywords:

aging, humans, longevity, genetics, life expectancy, lifespan, nutrition

Abstract

Aging is an evitable part of the lives of every organism. However, many organisms are capable of bending the rules and experience an increased longevity. Among these are turtles, elephants, whales and most importantly – humans. Definition for the discussion of anti-aging and longevity is presented alongside a historic analysis of the reasons for this venture. An examination of the adaptations of both short-lived, such as the mayfly, and long-lived organisms like turtles, the naked mole rat Heterocephalus glaber and the American lobster Homarus americanus for their possible human applications. Several studies on the genetics and molecular basis of longevity are presented and debated upon. Finally, there is an examination of possible cultural lifestyle effects on longevity, such as one’s environmental stresses, diet and nutrition, and physical activity. Overall, showing that a combination of genetic, molecular and lifestyle factors strongly affect and allow one to surpass the typical life expectancy. 

Downloads

Download data is not yet available.

References or Bibliography

Aburto, J. M., Villavicencio, F., Basellini, U., Kjærgaard, S., & Vaupel, J. W. (2020). Dynamics of life expectancy and life span equality. Proceedings of the National Academy of Sciences of the United States of America, 117(10), 5250–5259. https://doi.org/10.1073/pnas.1915884117

Singh, V. K., Watson, R. R. (2014). Enhanced longevity and role of omega-3 fatty acid. Omega-3 fatty acids in brain and neurological health, Academic Press, 1-7. https://www.sciencedirect.com/science/article/pii/B9780124105270000016

Guest P. C. (2019). Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. Advances in experimental medicine and biology, 1178, 1–24. https://doi.org/10.1007/978-3-030-25650-0_1

Roser, M., Ortiz-Ospina, E., & Ritchie, H. (2013, May 23). Life expectancy. Our World in Data. Retrieved August 29, 2022, from https://ourworldindata.org/life-expectancy

James C. Riley (2005) – Estimates of Regional and Global Life Expectancy, 1800–2001. Issue Population and Development Review. Population and Development Review. Volume 31, Issue 3, pages 537–543, September 2005.

Zijdeman, Richard; Ribeira da Silva, Filipa, 2015, "Life Expectancy at Birth (Total)"

Rose, M. R. (1991). Evolutionary Biology of Aging. New York: Oxford University Press.

Medawar, P. B. (1955). “The definition and measurement of senescence,” in Ciba Foundation Colloquia on Ageins, General Aspects, Vol. 1, eds G. E. W. Wolstenholme, M. P. Cameron, and J. Etherington (London: J&A Churchill).

Partridge, L., and Barton, N. H. (1996). On measuring the rate of aging. Proc. R. Soc. Lond. B. 263, 1365–1371.

Promislow, D. E. L., and Bronikowski, A. M. (2006). “The evolutionary genetics of senescence,” in: Evolutionary Genetics: Concepts and Case Studies, eds J. B. Wolf and C. Fox (New York: Oxford University Press), 464–481.

Fabian, D., and Flatt, T. (2011). The evolution of aging. Nat. Educ. Knowl. 2, 9.

http://hdl.handle.net/10622/LKYT53, IISH Dataverse, V1, and UN Population Division (2019)

Forterre, P., Gribaldo, S., & Brochier, C. (2005). Luca: à la recherche du plus proche ancêtre commun universel [Luca: the last universal common ancestor]. Medecine sciences : M/S, 21(10), 860–865. https://doi.org/10.1051/medsci/20052110860

​​Speakman J. R. (2005). Body size, energy metabolism and lifespan. The Journal of experimental biology, 208(Pt 9), 1717–1730. https://doi.org/10.1242/jeb.01556

Badwan, S., & Harper, J. (2021). Size Matters: Body Size is Correlated with Longevity in Speckled Cockroaches (Nauphoeta cineria). Current aging science, 14(3), 214–222. https://doi.org/10.2174/1874609814666210728170119

Carey, J. R. (2002). Longevity minimalists: life table studies of two species of northern Michigan adult mayflies. Experimental gerontology, 37(4), 567–570. https://doi.org/10.1016/s0531-5565(01)00180-2

Sheng, T.H. Systems Biology of Energy Metabolism. Harvard.https://www.hsph.harvard.edu/sheng-tony-hui/

Speakman, J. R., Selman, C., McLaren, J. S., & Harper, E. J. (2002). Living fast, dying when? The link between aging and energetics. The Journal of nutrition, 132(6 Suppl 2), 1583S–97S. https://doi.org/10.1093/jn/132.6.1583S

Holmes, B. (2021, May 18). Why scientists are studying the genetic tricks of the longest-lived animals. Smithsonian.com. Retrieved August 18, 2022, from https://www.smithsonianmag.com/science-nature/why-scientists-are-studying-genetic-tricks-longest-lived-animals-180977738/

de Magalhaes, J. P. (2017, April 4). Why do animals have such different lifespans? - Joao Pedro de magalhaes. TED. Retrieved August 18, 2022, from https://ed.ted.com/lessons/why-do-animals-have-such-different-lifespans-joao-pedro-de-magalhaes

Azpurua, J., Ke, Z., Chen, I. X., Zhang, Q., Ermolenko, D. N., Zhang, Z. D., Gorbunova, V., & Seluanov, A. (2013). Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 17350–17355. https://doi.org/10.1073/pnas.1313473110

Pérez, V. I., Buffenstein, R., Masamsetti, V., Leonard, S., Salmon, A. B., Mele, J., Andziak, B., Yang, T., Edrey, Y., Friguet, B., Ward, W., Richardson, A., & Chaudhuri, A. (2009). Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3059–3064. https://doi.org/10.1073/pnas.0809620106

Klapper, W., Kühne, K., Singh, K. K., Heidorn, K., Parwaresch, R., & Krupp, G. (1998). Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS letters, 439(1-2), 143–146. https://doi.org/10.1016/s0014-5793(98)01357-x

Berthold, E. (2021, May 24). The animals that can live forever. Curious. Retrieved August 18, 2022, from https://www.science.org.au/curious/earth-environment/animals-can-live-forever

Roland, J. (2019, March 8). How much does the average man weigh? Healthline. Retrieved August 29, 2022, from https://www.healthline.com/health/mens-health/average-weight-for-men

How much does an elephant weigh? Wonderopolis. (n.d.). Retrieved August 29, 2022, from https://wonderopolis.org/wonder/how-much-does-an-elephant-weigh

World Health Organization. (n.d.). GHE: Life expectancy and healthy life expectancy. World Health Organization. Retrieved August 18, 2022, from https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy#:~:text=Globally%2C%20life%20expectancy%20has%20increased,reduced%20years%20lived%20with%20disability.

Bucci, L., Ostan, R., Cevenini, E., Pini, E., Scurti, M., Vitale, G., Mari, D., Caruso, C., Sansoni, P., Fanelli, F., Pasquali, R., Gueresi, P., Franceschi, C., & Monti, D. (2016). Centenarians' offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging, 8(3), 510–519. https://doi.org/10.18632/aging.100912.

Perls, T., Shea-Drinkwater, M., Bowen-Flynn, J., Ridge, S. B., Kang, S., Joyce, E., Daly, M., Brewster, S. J., Kunkel, L., & Puca, A. A. (2000). Exceptional familial clustering for extreme longevity in humans. Journal of the American Geriatrics Society, 48(11), 1483–1485.

Perls, T. T., Wilmoth, J., Levenson, R., Drinkwater, M., Cohen, M., Bogan, H., Joyce, E., Brewster, S., Kunkel, L., & Puca, A. (2002). Life-long sustained mortality advantage of siblings of centenarians. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8442–8447. https://doi.org/10.1073/pnas.122587599

Willcox, B. J., Willcox, D. C., He, Q., Curb, J. D., & Suzuki, M. (2006). Siblings of Okinawan centenarians share lifelong mortality advantages. The journals of gerontology. Series A, Biological sciences and medical sciences, 61(4), 345–354. https://doi.org/10.1093/gerona/61.4.345

Sebastiani, P., Solovieff, N., Dewan, A. T., Walsh, K. M., Puca, A., Hartley, S. W., Melista, E., Andersen, S., Dworkis, D. A., Wilk, J. B., Myers, R. H., Steinberg, M. H., Montano, M., Baldwin, C. T., Hoh, J., & Perls, T. T. (2012). Genetic signatures of exceptional longevity in humans. PloS one, 7(1), e29848. https://doi.org/10.1371/journal.pone.0029848

Sebastiani, P., Andersen, S. L., McIntosh, A. I., Nussbaum, L., Stevenson, M. D., Pierce, L., Xia, S., Salance, K., & Perls, T. T. (2016). Familial Risk for Exceptional Longevity. North American actuarial journal : NAAJ, 20(1), 57–64. https://doi.org/10.1080/10920277.2015.1061946

van den Berg, N., Rodríguez-Girondo, M., van Dijk, I. K., Mourits, R. J., Mandemakers, K., Janssens, A., Beekman, M., Smith, K. R., & Slagboom, P. E. (2019). Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nature communications, 10(1), 35. https://doi.org/10.1038/s41467-018-07925-0

Herskind, A. M., McGue, M., Holm, N. V., Sørensen, T. I., Harvald, B., & Vaupel, J. W. (1996). The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870-1900. Human genetics, 97(3), 319–323. https://doi.org/10.1007/BF02185763

Tzanetakou, I. P., Nzietchueng, R., Perrea, D. N., & Benetos, A. (2014). Telomeres and their role in aging and longevity. Current vascular pharmacology, 12(5), 726–734. https://doi.org/10.2174/1570161111666131219112946

Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere shortening rate predicts species life span. Proceedings of the National Academy of Sciences of the United States of America, 116(30), 15122–15127. https://doi.org/10.1073/pnas.1902452116

von Figura, G., Hartmann, D., Song, Z., & Rudolph, K. L. (2009). Role of telomere dysfunction in aging and its detection by biomarkers. Journal of molecular medicine (Berlin, Germany), 87(12), 1165–1171. https://doi.org/10.1007/s00109-009-0509-5

Nalapareddy, K., Jiang, H., Guachalla Gutierrez, L. M., & Rudolph, K. L. (2008). Determining the influence of telomere dysfunction and DNA damage on stem and progenitor cell aging: what markers can we use?. Experimental gerontology, 43(11), 998–1004. https://doi.org/10.1016/j.exger.2008.09.002

Jiang, H., Schiffer, E., Song, Z., Wang, J., Zürbig, P., Thedieck, K., Moes, S., Bantel, H., Saal, N., Jantos, J., Brecht, M., Jenö, P., Hall, M. N., Hager, K., Manns, M. P., Hecker, H., Ganser, A., Döhner, K., Bartke, A., Meissner, C., … Rudolph, K. L. (2008). Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11299–11304. https://doi.org/10.1073/pnas.0801457105

Lee, S. H., Lee, J. H., Lee, H. Y., & Min, K. J. (2019). Sirtuin signaling in cellular senescence and aging. BMB reports, 52(1), 24–34. https://doi.org/10.5483/BMBRep.2019.52.1.290

Chen, C., Zhou, M., Ge, Y., & Wang, X. (2020). SIRT1 and aging related signaling pathways. Mechanisms of ageing and development, 187, 111215. https://doi.org/10.1016/j.mad.2020.111215

North, B. J., & Verdin, E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome biology, 5(5), 224. https://doi.org/10.1186/gb-2004-5-5-224

Kaeberlein, M., McVey, M., & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & development, 13(19), 2570–2580. https://doi.org/10.1101/gad.13.19.2570

Tissenbaum, H. A., & Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 410(6825), 227–230. https://doi.org/10.1038/35065638

Rogina, B., & Helfand, S. L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the National Academy of Sciences of the United States of America, 101(45), 15998–16003. https://doi.org/10.1073/pnas.0404184101

Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., & Cohen, H. Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388), 218–221. https://doi.org/10.1038/nature10815

Dang W. (2014). The controversial world of sirtuins. Drug discovery today. Technologies, 12, e9–e17. https://doi.org/10.1016/j.ddtec.2012.08.003

Mariño, G., Ugalde, A. P., Fernández, A. F., Osorio, F. G., Fueyo, A., Freije, J. M., & López-Otín, C. (2010). Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16268–16273. https://doi.org/10.1073/pnas.1002696107

Paolisso, G., Ammendola, S., Del Buono, A., Gambardella, A., Riondino, M., Tagliamonte, M. R., Rizzo, M. R., Carella, C., & Varricchio, M. (1997). Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. The Journal of clinical endocrinology and metabolism, 82(7), 2204–2209. https://doi.org/10.1210/jcem.82.7.4087

Bonafè, M., Barbieri, M., Marchegiani, F., Olivieri, F., Ragno, E., Giampieri, C., Mugianesi, E., Centurelli, M., Franceschi, C., & Paolisso, G. (2003). Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. The Journal of clinical endocrinology and metabolism, 88(7), 3299–3304. https://doi.org/10.1210/jc.2002-021810

Cheng, C. L., Gao, T. Q., Wang, Z., & Li, D. D. (2005). Role of insulin/insulin-like growth factor 1 signaling pathway in longevity. World journal of gastroenterology, 11(13), 1891–1895. https://doi.org/10.3748/wjg.v11.i13.1891

Myers, V., Broday, D. M., Steinberg, D. M., Yuval, Drory, Y., & Gerber, Y. (2013). Exposure to particulate air pollution and long-term incidence of frailty after myocardial infarction. Annals of epidemiology, 23(7), 395–400. https://doi.org/10.1016/j.annepidem.2013.05.001

Anderson, R., Richardson, G. D., & Passos, J. F. (2018). Mechanisms driving the ageing heart. Experimental gerontology, 109, 5–15. https://doi.org/10.1016/j.exger.2017.10.015

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Wang, H., Kakehashi, M., Matsumura, M., & Eboshida, A. (2007). Journal of cardiology, 49(1), 31–40.

Vaičiulis, V., Jaakkola, J., Radišauskas, R., Tamošiūnas, A., Lukšienė, D., & Ryti, N. (2021). Association between winter cold spells and acute myocardial infarction in Lithuania 2000-2015. Scientific reports, 11(1), 17062. https://doi.org/10.1038/s41598-021-96366-9

Cheng, J., Su, H., Xu, Z., & Tong, S. (2021). Extreme temperature exposure and acute myocardial infarction: Elevated risk within hours?. Environmental research, 202, 111691. https://doi.org/10.1016/j.envres.2021.111691

Fisher, J. A., Jiang, C., Soneja, S. I., Mitchell, C., Puett, R. C., & Sapkota, A. (2017). Summertime extreme heat events and increased risk of acute myocardial infarction hospitalizations. Journal of exposure science & environmental epidemiology, 27(3), 276–280. https://doi.org/10.1038/jes.2016.83

Fuhrman J. (2018). The Hidden Dangers of Fast and Processed Food. American journal of lifestyle medicine, 12(5), 375–381. https://doi.org/10.1177/1559827618766483

Martinez-Gonzalez, M. A., & Martin-Calvo, N. (2016). Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Current opinion in clinical nutrition and metabolic care, 19(6), 401–407.

Naumovski, N., Foscolou, A., D'Cunha, N. M., Tyrovolas, S., Chrysohoou, C., Sidossis, L. S., Rallidis, L., Matalas, A. L., Polychronopoulos, E., Pitsavos, C., & Panagiotakos, D. (2019). The Association between Green and Black Tea Consumption on Successful Aging: A Combined Analysis of the ATTICA and MEDiterranean ISlands (MEDIS) Epidemiological Studies. Molecules (Basel, Switzerland), 24(10), 1862. https://doi.org/10.3390/molecules24101862

Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/abp.2018_2749

Kollia, N., Panagiotakos, D. B., Chrysohoou, C., Georgousopoulou, E., Tousoulis, D., Stefanadis, C., Papageorgiou, C., & Pitsavos, C. (2018). Determinants of healthy ageing and its relation to 10-year cardiovascular disease incidence: the ATTICA study. Central European journal of public health, 26(1), 3–9. https://doi.org/10.21101/cejph.a5165

Life expectancy of the World Population. Worldometer. (n.d.). Retrieved August 29, 2022, from https://www.worldometers.info/demographics/life-expectancy/

Lee, G. D., Wilson, M. A., Zhu, M., Wolkow, C. A., de Cabo, R., Ingram, D. K., & Zou, S. (2006). Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging cell, 5(6), 515–524. https://doi.org/10.1111/j.1474-9726.2006.00241.x

Hwangbo, D. S., Lee, H. Y., Abozaid, L. S., & Min, K. J. (2020). Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients, 12(4), 1194. https://doi.org/10.3390/nu12041194

Pifferi, F., Terrien, J., Marchal, J., Dal-Pan, A., Djelti, F., Hardy, I., Chahory, S., Cordonnier, N., Desquilbet, L., Hurion, M., Zahariev, A., Chery, I., Zizzari, P., Perret, M., Epelbaum, J., Blanc, S., Picq, J. L., Dhenain, M., & Aujard, F. (2018). Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Communications biology, 1, 30. https://doi.org/10.1038/s42003-018-0024-8

Reimers, C. D., Knapp, G., & Reimers, A. K. (2012). Does physical activity increase life expectancy? A review of the literature. Journal of aging research, 2012, 243958. https://doi.org/10.1155/2012/243958

Ahmed, M. A. (2019, March 13). Can exercise extend your life? Harvard Health. Retrieved August 29, 2022, from https://www.health.harvard.edu/blog/can-exercise-extend-your-life-2019031316207

Di Ciaula, A., & Portincasa, P. (2020). The environment as a determinant of successful aging or frailty. Mechanisms of ageing and development, 188, 111244. https://doi.org/10.1016/j.mad.2020.111244

Härkänen, T. (2020, March 11). Heavy stress and lifestyle can predict how long we live. ScienceDaily. Retrieved August 29, 2022, from https://www.sciencedaily.com/releases/2020/03/200311100857.htm#:~:text=Being%20under%20heavy%20stress%20shortens,expectancy%20of%20men%20and%20women.

Shammas M. A. (2011). Telomeres, lifestyle, cancer, and aging. Current opinion in clinical nutrition and metabolic care, 14(1), 28–34. https://doi.org/10.1097/MCO.0b013e32834121b1

Guarente, L. P. (2020, January 30). Aging. Encyclopædia Britannica. Retrieved August 18, 2022, from https://www.britannica.com/science/aging-life-process

Published

11-30-2022

How to Cite

Zheng, A. (2022). Mechanisms of Aging from a Genetic, Molecular and Lifestyle Perspective. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3467

Issue

Section

HS Review Articles