Applications of CRISPR-Cas9 Technology to Treat CCR5 Tropic HIV-1
DOI:
https://doi.org/10.47611/jsrhs.v11i4.3464Keywords:
Translational Medical Sciences, Diseases Treatment and Therapies, HIV-1, Gene therapy, CRISPR-Cas9Abstract
Human immunodeficiency virus type 1 (HIV-1) is most notable for its role in directly infecting and killing CD4 T cells in the immune system, which can lead to the acquisition of Acquired Immunodeficiency Syndrome (AIDS). Currently, there are no cures for HIV-1, leaving 37 million people with HIV-1 infections and no definitive treatment. Researchers are working towards developing long-term treatments for HIV-1 using CRISPR-Cas9. These therapies include genetically engineering antiviral resistance into vulnerable cell types and cutting out viral genomes from infected cells. This article will explain the HIV-1 life cycle in detail, give an overview of CRISPR-Cas9 technology, and then go into detail about the potential applications of CRISPR-Cas9 for the treatment of CCR5 Tropic HIV-1.
Downloads
References or Bibliography
Cowley, S. The biology of HIV infection. Leprosy Rev. 2001, 72(2), 212-220. DOI: 10.5935/0305-7518.20010028
Simon, V.; Ho, D. D.; Karim, Q. A. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006, 368 (9534), 489-504. DOI: 10.1016/S0140-6736(06)69157-5
Deeks, S. G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. Nat. Rev. Dis. Primers. 2015, 1(1), 1-22. DOI: 10.1038/nrdp.2015.35
Marcus, J. L.; Leyden, W. A.; Alexeeff, S. E.; Anderson, A. N.; Hechter, R. C.; Hu, H.; Silverberg, M. J. Comparison of overall and comorbidity-free life expectancy between insured adults with and without HIV infection, 2000-2016. JAMA Netw. Open 2020, 3(6), e207954-e207954. DOI: 10.1001/jamanetworkopen.2020.7954
Hütter, G.; Nowak, D.; Mossner, M.; Ganepola, S.; Müßig, A.; Allers, K.; Thiel, E. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 2009, 360(7), 692-698. DOI: 10.1056/NEJMoa0802905
Gupta, R. K.; Abdul-Jawad, S.; McCoy, L. E.; Mok, H. P.; Peppa, D.; Salgado, M.; Olavarria, E. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019, 568(7751), 244-248. DOI: 10.1038/s41586-019-1027-4
Styczyński, J.; Tridello, G.; Koster, L.; Lacobelli, S.; van Biezen, A.; van der Werf, S.; Gratwohl, A. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020, 55(1), 126-136. DOI: 10.1038/s41409-019-0624-z
Solloch, U. V.; Lang, K.; Lange, V.; Böhme, I.; Schmidt, A. H.; Sauter, J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum. Immunol. 2017, 78(11-12), 710-717. DOI: 10.1016/j.humimm.2017.10.001
Kirchhoff F. HIV Life Cycle: Overview. In: Encyclopedia of AIDS. Springer, New York, NY., 2013 DOI:10.1007/978-1-4614-9610-6_60-1
Clinical Info. HIV/AIDS Glossary - Life Cycle. https://clinicalinfo.hiv.gov/en/glossary/life-cycle (accessed 2022-08-02).
Vidya Vijayan, K. K.; Karthigeyan, K. P.; Tripathi, S. P.; Hanna, L. E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol. 2017, 8, 580. DOI: 10.3389/fimmu.2017.00580
Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 2019, 380(10), 947-959. DOI: 10.1056/NEJMra1800729
Walter. M. DNA Repair after CRISPR-Cas9 double strand break. Wikimedia, September 25, 2017. https://commons.wikimedia.org/wiki/File:DNA_Repair.png (accessed 2022-08-28).
Zaboikin, M.; Zaboikina, T.; Freter, C.; Srinivasakumar, N. Non-homologous end joining and homology directed DNA repair frequency of double-stranded breaks introduced by genome editing reagents. PloS One 2017, 12(1), e0169931. DOI: 10.1371/journal.pone.0169931
Wang, W.; Ye, C.; Liu, J.; Zhang, D.; Kimata, J. T., and Zhou, P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9 2014, e115987. DOI: 10.1371/journal.pone.0115987
Qi, C.; Li, D.; Jiang, X.; Jia, X.; Lu, L.; Wang, Y.; Sun, J.; Shao, Y.; Wei, M. Inducing CCR5Δ32/Δ32 Homozygotes in the Human Jurkat CD4+ Cell Line and Primary CD4+ Cells by CRISPR-Cas9 Genome-Editing Technology. Mol. Ther. Nucleic Acids 2018, 12, 267–274. DOI: 10.1016/j.omtn.2018.05.012
Li, C., Guan, X.; Du, T.; Jin, W.; Wu, B.; Liu, Y.; Wang P.; Hu B.; Griffin G.E.; Shattock R.J.; Hu Q. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen. Virol. 2015, 96(8):2381-2393. DOI: 10.1099/vir.0.000139.
Xu, L.; Wang, J.; Liu, Y.; Xie, L.; Su, B.; Mou, D.; Chen, H. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 2019, 381(13), 1240-1247. DOI: 10.1056/NEJMoa1817426
Xu, L.; Yang, H.; Gao, Y.; Chen, Z.; Xie, L.; Liu, Y.; Wang, X.; Li, H.; Lai, W.; He, Y.; et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol. Ther. 2017, 25(8), 1782–1789. DOI: 10.1016/j.ymthe.2017.04.027
Kordelas, L.; Verheyen, J.; Esser, S. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N. Engl. J. Med. 2014, 371(9), 880-882. DOI: 10.1056/NEJMc1405805
Yu, S.; Yao, Y.; Xiao, H.; Li, J.; Liu, Q.; Yang, Y.; Chen, X. Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both X4-and R5-tropic human immunodeficiency virus type 1 infection. Hum. Gene Ther. 2018, 29(1), 51-67. DOI: 10.1089/hum.2017.032
Liu, Z.; Chen, S.; Jin, X. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci. 2017, 7, 47 DOI: 10.1186/s13578-017-0174-2
Wang Q.; Liu S.; Liu Z.; Ke Z.; Li C.; Yu X. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res. 2018, 250, 21–30. DOI: 10.1016/j.virusres.2018.04.002
Yin C.; Zhang T.; Qu X.; Zhang Y.; Putatunda R.; Xiao X. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol. Ther. 2017, 25, 1168–1186. DOI: 10.1016/j.ymthe.2017.03.012
Lebbink R. J.; de Jong D. C.; Wolters F.; Kruse E. M.; van Ham P. M.; Wiertz E. J. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci. Rep. 2017, 7:41968. DOI: 10.1038/srep41968
Herskovitz, J.; Hasan, M.; Patel, M.; Blomberg, W. R.; Cohen, J. D.; Machhi, J.; Gendelman, H. E. CRISPR-Cas9 mediated exonic disruption for HIV-1 elimination. EBioMedicine 2021, 73, 103678. DOI: 10.1016/j.ebiom.2021.103678
Burke, B. P.; Levin, B. R.; Zhang, J.; Sahakyan, A.; Boyer, J.; Carroll, M. V.; Symonds, G. P. Engineering cellular resistance to HIV-1 infection in vivo using a dual therapeutic lentiviral vector. Mol. Ther. Nucleic Acids 4 2015, e236. DOI: 10.1038/mtna.2015.10
Voit, R.A.; Mcmahon, M.A.; Sawyer, S.L.; Porteus, M.H. Generation of an HIV Resistant T-cell Line by Targeted “Stacking” of Restriction Factors. Mol. Ther. 2013, 21(4):786-795. DOI: 10.1038/mt.2012.284
Petit, N.; Dorgham, K.; Levacher, B.; Burlion, A.; Gorochov, G.; Marodon, G. Targeting both viral and host determinants of human immunodeficiency virus entry, using a new lentiviral vector coexpressing the T20 fusion inhibitor and a selective CCL5 intrakine. Hum. Gene Ther. Methods 2014, 25(4):232-40. DOI: 10.1089/hgtb.2014.034
Published
How to Cite
Issue
Section
Copyright (c) 2022 Ariv Tandon; William Feist
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.