Molecular Mechanisms of Cancer Metabolism and Their Cellular Cycles
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3418Keywords:
Cancer, Cancer Metabolism, Metabolic Pathways, Amino Acid Metabolism, Central Carbon Metabolism, Diet, Dietary InterventionsAbstract
Cancer is a prevalent disease, with 1,752,735 new cases reported to the CDC in 2019. The disease is characterized by uncontrolled growth and spread of abnormal cells. Current treatments for cancer can affect the whole body and have detrimental effects. Cancer cells are often programmed metabolically. In recent years, treatments to undermine this metabolic reprogramming have come to the forefront. In this review, we explore some of the molecular mechanisms underlying certain dietary interventions and critical metabolic pathways. Dietary interventions such as chronic calorie restriction (CR) and fasting have been shown to aid in adjusting metabolic reprogramming to help in reducing cancer progression. Other dietary interventions target amino acid (AA) metabolism. Essential AAs are only consumed from the diet and their restriction has been shown to work as a treatment in mice. Lastly, central carbon metabolism includes the TCA cycle and glycolysis, both commonly reprogrammed pathways in cancer cells. Other dietary interventions and the reprogramming of these pathways can be used to treat cancer in other ways, such as knocking out genes and cell cycle arrest.
Downloads
References or Bibliography
(n.d.). Retrieved from https://www.gastrojournal.org/article/S0016-5085(21)03159-0
Abdollahi, P., Vandsemb, E. N., & Børset, M. (2022, January 01). Phosphatases of regenerating liver are key regulators of metabolism in cancer cells - role of Serine/Glycine metabolism. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694249/
Abeyasekera, K. N. (n.d.). Benefits of Intermittent Fasting: A Systematic Review of Randomized Clinical Trials. Retrieved from https://scholar.dominican.edu/physician-assistant-studies-student-articles/12/
Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., & Melino, G. (2014, March 20). Serine and glycine metabolism in cancer. Retrieved from https://www.sciencedirect.com/science/article/pii/S0968000414000280
Ananieva, E. A., & Wilkinson, A. C. (2018, January). Branched-chain amino acid metabolism in cancer. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732628/
Anderson, N. M., Mucka, P., Kern, J. G., & Feng, H. (2017, July 26). The emerging role and targetability of the TCA cycle in cancer metabolism - Protein & Cell. Retrieved from https://link.springer.com/article/10.1007/s13238-017-0451-1
Bárcena, C., Quirós, P. M., Durand, S., Mayoral, P., Rodríguez, F., Caravia, X. M., . . . López-Otín, C. (2018, August 28). Methionine Restriction Extends Lifespan in Progeroid Mice and Alters Lipid and Bile Acid Metabolism. Retrieved from https://www.sciencedirect.com/science/article/pii/S2211124718312221
Baucom, C., Bate, J., Ochoa, S., Santos, I., Sergios, A., Lorentzen, L., & Reilly, K. (2019). The Epidemiology of the
AIDS Pandemic: Historical, Cultural, Political, Societal Perspectives and Knowledge of HIV. Journal of Student Research, 8(2). https://doi.org/10.47611/jsr.v8i2.781
C;, C. G. (n.d.). The role of SIRT2 in cancer: A novel therapeutic target. Retrieved from https://pubmed.ncbi.nlm.nih.gov/32449165/
CS;, B. D. (n.d.). Adiponectin in relation to malignancies: A review of existing basic research and clinical evidence. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18265479/
Caffa, I., Spagnolo, V., Vernieri, C., Valdemarin, F., Becherini, P., Wei, M., . . . Nencioni, A. (2020, July 15). Fasting-mimicking diet and hormone therapy induce breast cancer regression. Retrieved from https://www.nature.com/articles/s41586-020-2502-7
Cancer Data and Statistics. (2022, June 06). Retrieved from https://www.cdc.gov/cancer/dcpc/data/
Cardaci, S., & Ciriolo, M. R. (2012, July 19). TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State. Retrieved from https://www.hindawi.com/journals/ijcb/2012/161837/
Cellarier, E., Durando, X., Vasson, M., Farges, M., Demiden, A., Maurizis, J., . . . Chollet, P. (2003, August 01). Methionine dependency and cancer treatment. Retrieved from https://www.sciencedirect.com/science/article/pii/S030573720300118X?casa_token=y56hxPmwKhQAAAAA:E7sS3_VQydc_3dbOyIrIozilvO4rn1woVMJHD81XTJij5QS_SAuYwuGJ8q3UuY2xxdVb-NAR1Uyr
Chalkiadaki, A., & Guarente, L. (2015, September 18). The multifaceted functions of sirtuins in cancer. Retrieved from https://www.nature.com/articles/nrc3985
De Groot, S., Pijl, H., Van der Hoeven, J. J., & Kroep, J. R. (2019, May 22). Effects of short-term fasting on cancer treatment - Journal of Experimental & Clinical Cancer Research. Retrieved from https://link.springer.com/article/10.1186/s13046-019-1189-9
Elia, I., & Fendt, S. (2016, November 22). In vivo cancer metabolism is defined by the nutrient microenvironment. Retrieved from https://tcr.amegroups.com/article/view/10574/html
Eniafe, J., & Jiang, S. (2021, April 16). The functional roles of TCA cycle metabolites in cancer. Retrieved from https://www.nature.com/articles/s41388-020-01639-8
Faubert B;Vincent EE;Griss T;Samborska B;Izreig S;Svensson RU;Mamer OA;Avizonis D;Shackelford DB;Shaw RJ;Jones RG;. (n.d.). Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24550282/
Gu, L., Fu, R., Hong, J., Ni, H., Yu, K., & Lou, H. (0001, January 01). Effects of Intermittent Fasting in Human Compared to a Non-intervention Diet and Caloric Restriction: A Meta-Analysis of Randomized Controlled Trials. Retrieved from https://www.frontiersin.org/articles/10.3389/fnut.2022.871682/full#B4
Hursting, S. D., Dunlap, S. M., Ford, N. A., Hursting, M. J., & Lashinger, L. M. (2013, March 07). Calorie restriction and cancer prevention: A mechanistic perspective - Cancer & Metabolism. Retrieved from https://cancerandmetabolism.biomedcentral.com/articles/10.1186/2049-3002-1-10
JW;, B. S. (n.d.). The Molecular Link from Diet to Cancer Cell Metabolism. Retrieved from https://pubmed.ncbi.nlm.nih.gov/32504556/
Jones, R. G., & Thompson, C. B. (2009, March 01). Tumor suppressors and cell metabolism: A recipe for cancer growth. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763495/
Jung, M. K., Okekunle, A. P., Lee, J. E., Sung, M. K., & Lim, Y. J. (2021, December 30). Role of Branched-chain Amino Acid Metabolism in Tumor Development and Progression. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749315/
Kang, J. (2020, March 14). Dietary restriction of amino acids for Cancer therapy. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071719/
Kitada, M., Ogura, Y., Monno, I., Xu, J., & Koya, D. (2021, January 29). Effect of Methionine Restriction on Aging: Its Relationship to Oxidative Stress. Retrieved from https://www.mdpi.com/2227-9059/9/2/130
LL;, C. K. (n.d.). Intermittent fasting in the prevention and treatment of cancer. Retrieved from https://pubmed.ncbi.nlm.nih.gov/34383300/
Liberti, M. V., & Locasale, J. W. (2016, March). The Warburg Effect: How Does it Benefit Cancer Cells? Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783224/
Lieu, E. L., Nguyen, T., Rhyne, S., & Kim, J. (2020, January). Amino acids in cancer. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000687/
Longo, V. D., Di Tano, M., Mattson, M. P., & Guidi, N. (2021, January 14). Intermittent and periodic fasting, longevity and disease. Retrieved from https://www.nature.com/articles/s43587-020-00013-3
Martín-Montalvo, A., Villalba, J. M., Navas, P., & De Cabo, R. (2010, November 08). NRF2, cancer and calorie restriction. Retrieved from https://www.nature.com/articles/onc2010492
Mattaini, K. R., Sullivan, M. R., & Vander Heiden, M. G. (2016, August 01). The importance of serine metabolism in cancer. Retrieved from https://rupress.org/jcb/article/214/3/249/38693/The-importance-of-serine-metabolism-in-cancerThe
Meynet, O., & Ricci, J. (2014, June 08). Caloric restriction and cancer: Molecular mechanisms and clinical implications. Retrieved from https://www.sciencedirect.com/science/article/pii/S147149141400080X#bib0125
Montal, E., Dewi, R., Bhalla, K., Ou, L., Hwang, B., Ropell, A., . . . Girnun, G. (2015, October 17). PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth. Retrieved from https://www.sciencedirect.com/science/article/pii/S1097276515007649
O’Flanagan, C. H., Smith, L. A., McDonell, S. B., & Hursting, S. D. (2017, May 24). When less may be more: Calorie restriction and response to cancer therapy - BMC Medicine. Retrieved from https://link.springer.com/article/10.1186/s12916-017-0873-x
Patterson, R. E., Laughlin, G. A., LaCroix, A. Z., Hartman, S. J., Natarajan, L., Senger, C. M., . . . Gallo, L. C. (2015, August). Intermittent Fasting and Human Metabolic Health. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516560/
Pearson KJ;Lewis KN;Price NL;Chang JW;Perez E;Cascajo MV;Tamashiro KL;Poosala S;Csiszar A;Ungvari Z;Kensler TW;Yamamoto M;Egan JM;Longo DL;Ingram DK;Navas P;de Cabo R;. (n.d.). Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18287083/
Raffaghello L;Lee C;Safdie FM;Wei M;Madia F;Bianchi G;Longo VD;. (n.d.). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18378900
Ragni, M., Ruocco, C., Tedesco, L., Carruba, M. O., Valerio, A., & Nisoli, E. (2022, March 30). An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition. Retrieved from https://www.sciencedirect.com/science/article/pii/S2212877822000473
Romero-Garcia S;Lopez-Gonzalez JS;Báez-Viveros JL;Aguilar-Cazares D;Prado-Garcia H;. (n.d.). Tumor cell metabolism: An integral view. Retrieved from https://pubmed.ncbi.nlm.nih.gov/22057267/
Roth, M., & Chen, W. Y. (2013, April 22). Sorting out functions of sirtuins in cancer. Retrieved from https://www.nature.com/articles/onc2013120
Schmeisser, K., Mansfeld, J., Kuhlow, D., Weimer, S., Priebe, S., Heiland, I., . . . Ristow, M. (2013, September 29). Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Retrieved from https://www.nature.com/articles/nchembio.1352
Shanmugalingam, T., Bosco, C., Ridley, A. J., & Van Hemelrijck, M. (2016, November). Is there a role for IGF-1 in the development of second primary cancers? Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119990/
T;, S. (n.d.). Cancer metabolism: Key players in metabolic reprogramming. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23279446/
Tedeschi, P. M., Markert, E. K., Gounder, M., Lin, H., Dvorzhinski, D., Dolfi, S. C., . . . Vazquez, A. (2013, October 24). Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Retrieved from https://www.nature.com/articles/cddis2013393
Vidoni, C., Ferraresi, A., Esposito, A., Maheshwari, C., Dhanasekaran, D. N., Mollace, V., & Isidoro, C. (2021, December 30). Calorie Restriction for Cancer Prevention and Therapy: Mechanisms, Expectations, and Efficacy. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749320/
Wanders, D., Hobson, K., & Ji, X. (2020, March 03). Methionine Restriction and Cancer Biology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146589/#B9-nutrients-12-00684
Ward, P., & Thompson, C. (2012, March 19). Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Retrieved from https://www.sciencedirect.com/science/article/pii/S1535610812000785
Wei, Z., Liu, X., Cheng, C., Yu, W., & Yi, P. (0001, January 01). Metabolism of Amino Acids in Cancer. Retrieved from https://www.frontiersin.org/articles/10.3389/fcell.2020.603837/full
Zhao, Y., Ye, X., Chen, R., Gao, Q., Zhao, D., Ling, C., . . . Xie, Y. (2020, September 01). Sirtuin 7 promotes non‑small cell lung cancer progression by facilitating G1/S phase and epithelial‑mesenchymal transition and activating AKT and ERK1/2 signaling. Retrieved from https://www.spandidos-publications.com/10.3892/or.2020.7672
Published
How to Cite
Issue
Section
Copyright (c) 2022 Harshita Ganga; Dr. Raj Appavu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.