Analysis on Blockchain Effectiveness Towards Protecting Renewable-Based Smart Power Grids

Authors

  • Brendan McQuilkin Conestoga High School
  • Samuel Liburd Jr. Yale University

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3379

Keywords:

Smart Energy Grids, Artificial Intelligence, Blockchain, Renewable Energy, Climate Change

Abstract

Non-renewable energies have been increasingly destructive to the environment, and as a result, society has been seeking to replace these energies at a growing rate. Converting current non-renewable-based power grids to environmentally friendly smart energy grids has been identified as one of the most powerful ways to remove the reliance on non-renewable energies. However, failing to keep these new power grids efficient and secure will cause this concept to fail to become a reality. With a new energy management system, a new security system is also required. Some developing technologies such as blockchain and artificial intelligence have been identified as candidates for strong and efficient security protocols for smart grids. Analysis shows that blockchain technology can provide incredible defense against malicious tampering and data protection. Artificial intelligence can be trained to identify attacks before they become destructive. Along with these new technologies, concepts such as the firewall should be included due to their general effectiveness and efficiency. By utilizing both old and new security protocols, a safer, more efficient, and more reliable energy grid for the future can be created.

Downloads

Download data is not yet available.

Author Biography

Samuel Liburd Jr., Yale University

Advisor

References or Bibliography

Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224, DOI: https://doi.org/10.1016/j.jii.2021.100224

Jabeen, S. (2021). A comparative systematic literature review and bibliometric analysis on sustainability of renewable energy sources. 670216917, DOI: https://doi.org/10.32479/ijeep.10759

Friansa, K., Haq, I. N., Santi, B. M., Kurniadi, D., Leksono, E., & Yuliarto, B. (2017). Development of battery monitoring system in smart microgrid based on internet of things (IoT). Procedia engineering, 170, 482-487, DOI: https://doi.org/10.1016/j.proeng.2017.03.077

Kim, T., Ochoa, J., Faika, T., Mantooth, A., Di, J., Li, Q., & Lee, Y. (2020). An overview of cyber-physical security of battery management systems and adoption of blockchain technology. IEEE Journal of Emerging and Selected Topics in Power Electronics, DOI: https://doi.org/10.1109/JESTPE.2020.2968490

Boretti, A. (2021). Integration of solar thermal and photovoltaic, wind, and battery energy storage through AI in NEOM city. Energy and AI, 3, 100038, DOI: https://doi.org/10.1016/j.egyai.2020.100038

Frankel, G. S., Vienna, J. D., Lian, J., Guo, X., Gin, S., Kim, S. H., ... & Scully, J. R. (2021). Recent advances in corrosion science applicable to disposal of high-level nuclear waste. Chemical Reviews, 121(20), 12327-12383, DOI: https://doi.org/10.1021/acs.chemrev.0c00990

Stecca, M., Elizondo, L. R., Soeiro, T. B., Bauer, P., & Palensky, P. (2020). A comprehensive review of the integration of battery energy storage systems into distribution networks. IEEE Open Journal of the Industrial Electronics Society, 1, 46-65, DOI: https://doi.org/10.1109/OJIES.2020.2981832

Zhang, R., Xue, R., & Liu, L. (2019). Security and privacy on blockchain. ACM Computing Surveys (CSUR), 52(3), 1-34, DOI: https://doi.org/10.1145/3316481

Veiga, A. P. (2018). Applications of artificial intelligence to network security. arXiv preprint arXiv:1803.09992, DOI: https://doi.org/10.48550/arXiv.1803.09992

Greenberg, A. (2018). The untold story of NotPetya, the most devastating cyberattack in history. Wired, August, 22, Referenced from https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

Hwang, T. (2018). Computational power and the social impact of artificial intelligence. arXiv preprint arXiv:1803.08971, DOI: https://doi.org/10.48550/arXiv.1803.08971

Banerjee, D. (2018). A microarchitectural study on apple’s a11 bionic processor. Arkansas State University: Jonesboro, AR, USA, Referenced from https://www.researchgate.net/publication/325053646_A_Microarchitectural_Study_on_Apple%27s_A11_Bionic_Processor

Zohuri, B., & Moghaddam, M. (2020). Deep learning limitations and flaws. Mod. Approaches Mater. Sci, 2, 241-250, DOI: http://dx.doi.org/10.32474/MAMS.2020.02.000138

Douligeris, C., & Mitrokotsa, A. (2004). DDoS attacks and defense mechanisms: classification and state-of-the-art. Computer networks, 44(5), 643-666, DOI: https://doi.org/10.1016/j.comnet.2003.10.003

Dubrawsky, I. (2003). Firewall evolution-deep packet inspection. Security Focus, 29, 21, Referenced from https://www.academia.edu/download/33609188/Firewall-Evolution-deep-packet-inspection.pdf

Biswas, S., Sohel, M., Sajal, M. M., Afrin, T., Bhuiyan, T., & Hassan, M. M. (2018, October). A study on remote code execution vulnerability in web applications. In International Conference on Cyber Security and Computer Science (ICONCS 2018), Referenced from https://www.researchgate.net/publication/328956499_A_Study_on_Remote_Code_Execution_Vulnerability_in_Web_Applications

Gupta, S., & Gupta, B. B. (2017). Cross-Site Scripting (XSS) attacks and defense mechanisms: classification and state-of-the-art. International Journal of System Assurance Engineering and Management, 8(1), 512-530, DOI: https://doi.org/10.1007/s13198-015-0376-0

Xu, B., Wang, W., Hao, Q., Zhang, Z., Du, P., Xia, T., ... & Wang, X. (2018). A security design for the detecting of buffer overflow attacks in IoT device. IEEE Access, 6, 72862-72869, DOI: https://doi.org/10.1109/ACCESS.2018.2881447

Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J., ... & Shavitt, Y. (2016). {DROWN}: Breaking {TLS} Using {SSLv2}. In 25th USENIX Security Symposium (USENIX Security 16) (pp. 689-706), Referenced from https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram

Gutmann, P. (2011). Do users verify SSH keys. Login, 36, 35-36, Referenced from https://www.usenix.org/system/files/login/articles/105484-Gutmann.pdf

Halfond, W. G., Viegas, J., & Orso, A. (2006, March). A classification of SQL-injection attacks and countermeasures. In Proceedings of the IEEE international symposium on secure software engineering (Vol. 1, pp. 13-15). IEEE, Referenced from https://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf

Harsha, M. S., Bhavani, B. M., & Kundhavai, K. R. (2018, September). Analysis of vulnerabilities in MQTT security using Shodan API and implementation of its countermeasures via authentication and ACLs. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2244-2250). IEEE, DOI: https://doi.org/10.1109/ICACCI.2018.8554472

Hassan, M. M., Nipa, S. S., Akter, M., Haque, R., Deepa, F. N., Rahman, M., ... & Sharif, M. H. (2018). Broken authentication and session management vulnerability: a case study of web application. Int. J. Simul. Syst. Sci. Technol, 19(2), 1-11, Referenced from https://ijssst.info/Vol-19/No-2/paper6.pdf

Abdullah, A. M. (2017). Advanced encryption standard (AES) algorithm to encrypt and decrypt data. Cryptography and Network Security, 16, 1-11, Referenced from https://www.researchgate.net/profile/Ako-Abdullah/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data/links/59437cd8a6fdccb93ab28a48/Advanced-Encryption-Standard-AES-Algorithm-to-Encrypt-and-Decrypt-Data.pdf

Meneses, F., Fuertes, W., Sancho, J., Salvador, S., Flores, D., Aules, H., ... & Nuela, D. (2016). RSA encryption algorithm optimization to improve performance and security level of network messages. IJCSNS, 16(8), 55, Referenced from https://www.academia.edu/download/51917545/20160809.pdf

Suguna, S., Dhanakoti, V., & Manjupriya, R. (2016). A study on symmetric and asymmetric key encryption algorithms. Int Res J Eng Technol (IRJET), 3(4), 27-31, Referenced from https://www.academia.edu/download/54558849/IRJET-V3I407.pdf

Sumagita, M., Riadi, I., Sh, J. P. D. S., & Warungboto, U. (2018). Analysis of secure hash algorithm (SHA) 512 for encryption process on web based application. International Journal of Cyber-Security and Digital Forensics (IJCSDF), 7(4), 373-381, Referenced from https://www.researchgate.net/profile/Imam-Riadi-2/publication/327392778_Analysis_of_Secure_Hash_Algorithm_SHA_512_for_Encryption_Process_on_Web_Based_Application/links/5b8cbe5e4585151fd1447946/Analysis-of-Secure-Hash-Algorithm-SHA-512-for-Encryption-Process-on-Web-Based-Application.pdf

Amann, J., Gasser, O., Scheitle, Q., Brent, L., Carle, G., & Holz, R. (2017, November). Mission accomplished? HTTPS security after DigiNotar. In Proceedings of the 2017 Internet Measurement Conference (pp. 325-340), DOI: https://doi.org/10.1145/3131365.3131401

Bazrafshan, Z., Hashemi, H., Fard, S. M. H., & Hamzeh, A. (2013, May). A survey on heuristic malware detection techniques. In The 5th Conference on Information and Knowledge Technology (pp. 113-120). IEEE, Referenced from https://www.researchgate.net/profile/Zahra-Bazrafshan-2/publication/260729684_A_survey_on_heuristic_malware_detection_techniques/links/54df00e60cf2953c22b0d005/A-survey-on-heuristic-malware-detection-techniques.pdf

Konstantinou, E., & Wolthusen, S. (2008). Metamorphic virus: Analysis and detection. Royal Holloway University of London, 15, 15, Referenced from https://www.csee.umbc.edu/courses/undergraduate/426/fall14/lectures/l07/RHUL-MA-2008-02.pdf

Rahimi-Eichi, H., Ojha, U., Baronti, F., & Chow, M. Y. (2013). Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE industrial electronics magazine, 7(2), 4-16, DOI: https://doi.org/10.1109/MIE.2013.2250351

Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li‐Ion Batteries: Chemistry and Recycling. Advanced Energy Materials, 11(43), 2003456, DOI: https://doi.org/10.1002/aenm.202003456

Min, X., Xiao, J., Fang, M., Wang, W. A., Zhao, Y., Liu, Y., ... & Huang, Z. (2021). Potassium-ion batteries: outlook on present and future technologies. Energy & Environmental Science, 14(4), 2186-2243, Referenced from http://eprints.bournemouth.ac.uk/35513/1/PIBs%20review%202021.pdf

Eng, A. Y. S., Kumar, V., Zhang, Y., Luo, J., Wang, W., Sun, Y., ... & Seh, Z. W. (2021). Room‐temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Advanced Energy Materials, 11(14), 2003493, DOI: https://doi.org/10.1002/aenm.202003493

Rabie, A. H., Saleh, A. I., & Ali, H. A. (2021). Smart electrical grids based on cloud, IoT, and big data technologies: state of the art. Journal of Ambient Intelligence and Humanized Computing, 12(10), 9449-9480, DOI: https://doi.org/10.1007/s12652-020-02685-6

Moreno Escobar, J. J., Morales Matamoros, O., Tejeida Padilla, R., Lina Reyes, I., & Quintana Espinosa, H. (2021). A comprehensive review on smart grids: Challenges and opportunities. Sensors, 21(21), 6978, DOI: https://doi.org/10.3390/s21216978

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695, DOI: https://doi.org/10.1007/s12525-021-00475-2

Published

11-30-2022

How to Cite

McQuilkin, B., & Liburd Jr., S. (2022). Analysis on Blockchain Effectiveness Towards Protecting Renewable-Based Smart Power Grids. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3379

Issue

Section

HS Review Articles