Treating Dilated Cardiomyopathy with Methylene Blue Using the Drosophila melanogaster Heart Model
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3361Keywords:
Dilated cardiomyopathy, Ubiquitin-proteasome system, Proteasome, Methylene blue, Drosophila melanogaster, Canton-S, wupA, End-diastolic diameter, End-systolic diameter, Fractional shorteningAbstract
Dilated cardiomyopathy (DCM), the most common cardiomyopathy, is characterized by ventricular dilation and impaired heart contractility. Past studies found that the inhibition of the ubiquitin-proteasome system (UPS), a crucial protein degradation system that removes dysfunctional proteins, plays a key role in the pathogenesis of DCM. Since treatments for DCM only aim at alleviating heart failure symptoms, a new therapeutic was sought. Methylene blue (MB) was selected because of its cardioprotective properties and ability to increase proteasome activity, potentially allowing it to revert the impact of an impaired UPS. The Drosophila melanogaster strain wupA, which presents DCM symptoms, was used and treated with MB (30 μM). The flies’ lifespans and negative geotaxis were assessed, and dissections were conducted to analyze heart rates (HR), heart diameters, and fractional shortening (FS) with ImageJ. The log-rank test and t-tests were used to analyze statistical significance. Results showed that DCM increased the heart diameters (p<0.01) and decreased the HR (p<0.05), FS (p<0.01), and negative geotaxis (p<0.01). MB fully restored the dilated heart diameters and impaired FS as there was no significant difference between control and experimental groups (p>0.05), exhibiting potential in treating DCM. However, MB didn't affect the impaired HR and negative geotaxis of flies with DCM. Hence, future studies should investigate supplemental treatments to fully restore those properties.
Downloads
References or Bibliography
Bier, E., & Bodmer, R. (2004). Drosophila, an emerging model for cardiac disease. Gene, 342(1), 1-11. https://doi.org/10.1016/j.gene.2004.07.018
Bland, J. M., & Altman, D. G. (1998). Survival probabilities (the Kaplan-Meier method). Bmj, 317(7172), 1572-1580. https://doi.org/10.1136/bmj.317.7172.1572
Bland, J. M., & Altman, D. G. (2004). The logrank test. Bmj, 328(7447), 1073. https://doi.org/10.1136/bmj.328.7447.1073
Chan, K., Harper, A. R., Ashrafian, H., & Yavari, A. (2018). Cardiomyopathies. Medicine, 46(10), 606-617. https://doi.org/10.1016/j.mpmed.2018.07.014
Dahlmann, B. (2007). Role of proteasomes in disease. BMC biochemistry, 8(1), 1-12. https://doi.org/10.1186/1471-2091-8-s1-s3
Duicu, O. M., Privistirescu, A., Wolf, A., Petruş, A., Dănilă, M. D., Raţiu, C. D., ... & Sturza, A. (2017). Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts. Canadian Journal of Physiology and Pharmacology, 95(11), 1376-1382. https://doi.org/10.1139/cjpp-2017-0074
Fazio, S., Sabatini, D., Capaldo, B., Vigorito, C., Giordano, A., Guida, R., ... & Saccà, L. (1996). A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. New England Journal of Medicine, 334(13), 809-814. https://doi.org/10.1056/nejm199603283341301
Franz, W. M., Müller, O. J., & Katus, H. A. (2001). Cardiomyopathies: from genetics to the prospect of treatment. The Lancet, 358(9293), 1627-1637. https://doi.org/10.1016/s0140-6736(01)06657-0
Gilda, J. E., & Gomes, A. V. (2017). Proteasome dysfunction in cardiomyopathies. The Journal of physiology, 595(12), 4051-4071. https://doi.org/10.1113/JP273607
Ginimuge, P. R., & Jyothi, S. D. (2010). Methylene blue: revisited. Journal of anaesthesiology, clinical pharmacology, 26(4), 517–520. https://doi.org/10.4103/0970-9185.74599
Herman, L. L., Padala, S. A., Annamaraju, P., & Bashir, K. (2021). Angiotensin converting enzyme inhibitors (ACEI). StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK431051/
Herrmann, J., Wohlert, C., Saguner, A. M., Flores, A., Nesbitt, L. L., Chade, A., ... & Lerman, A. (2013). Primary proteasome inhibition results in cardiac dysfunction. European journal of heart failure, 15(6), 614-623. https://doi.org/10.1093/eurjhf/hft034
Hofmann, C., Katus, H. A., & Doroudgar, S. (2019). Protein misfolding in cardiac disease. Circulation, 139(18), 2085-2088. https://doi.org/10.1161/circulationaha.118.037417
Jefferies, J. L., & Towbin, J. A. (2010). Dilated cardiomyopathy. The Lancet, 375(9716), 752-762. https://doi.org/10.1016/s0140-6736(09)62023-7
Li, J., Horak, K. M., Su, H., Sanbe, A., Robbins, J., & Wang, X. (2011). Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. The Journal of clinical investigation, 121(9). https://doi.org/10.1172/jci45709
Limphong, P., Zhang, H., Christians, E., Liu, Q., Riedel, M., Ivey, K., ... & Benjamin, I. (2013). Modeling human protein aggregation cardiomyopathy using murine induced pluripotent stem cells. Stem cells translational medicine, 2(3), 161-166. https://doi.org/10.5966/sctm.2012-0073
Lindqvist, P., Henein, M., & Kazzam, E. (2003). Right ventricular outflow-tract fractional shortening: an applicable measure of right ventricular systolic function. European Journal of Echocardiography, 4(1), 29-35. https://doi.org/10.1053/euje.2002.0177
Lynch, T. L., Sivaguru, M., Velayutham, M., Cardounel, A. J., Michels, M., Barefield, D., ... & Sadayappan, S. (2015). Oxidative stress in dilated cardiomyopathy caused by MYBPC3 mutation. Oxidative medicine and cellular longevity, 2015. https://doi.org/10.1155/2015/424751
Macleod, G. T., Hegstrom-Wojtowicz, M., Charlton, M. P., & Atwood, H. L. (2002). Fast calcium signals in Drosophila motor neuron terminals. Journal of neurophysiology, 88(5), 2659-2663. https://doi.org/10.1152/jn.00515.2002
Madan, A., Viswanathan, M. C., Woulfe, K. C., Schmidt, W., Sidor, A., Liu, T., ... & Cammarato, A. (2020). TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction. Proceedings of the National Academy of Sciences, 117(31), 18822-18831. https://doi.org/10.1073%2Fpnas.2001692117
Mahmaljy, H., Yelamanchili, V. S., & Singhal, M. (2021). Dilated cardiomyopathy. In StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK441911/
Mangual, J. O., Kraigher-Krainer, E., De Luca, A., Toncelli, L., Shah, A., Solomon, S., ... & Pedrizzetti, G. (2013). Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. Journal of biomechanics, 46(10), 1611-1617. https://doi.org/10.1016/j.jbiomech.2013.04.012
Mathieu, S., El Khoury, N., Rivard, K., Paradis, P., Nemer, M., & Fiset, C. (2018). Angiotensin II overstimulation leads to an increased susceptibility to dilated cardiomyopathy and higher mortality in female mice. Scientific reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-19436-5
Medina, D. X., Caccamo, A., & Oddo, S. (2011). Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain pathology, 21(2), 140-149. https://doi.org/10.1111/j.1750-3639.2010.00430.x
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 6099, Methylene blue. Retrieved April 9, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Methylene-blue.
Nichols, C. D., Becnel, J., & Pandey, U. B. (2012). Methods to assay Drosophila behavior. JoVE (Journal of Visualized Experiments), (61), e3795. https://doi.org/10.3791/3795
Obin, M., Shang, F., Gong, X., Handelman, G., Blumberg, J., & Taylor, A. (1998). Redox regulation of ubiquitin‐conjugating enzymes: mechanistic insights using the thiol‐specific oxidant diamide. The FASEB journal, 12(7), 561-569. https://doi.org/10.1096/fasebj.12.7.561
Park, J., Kim, S. Y., Cha, G. H., Lee, S. B., Kim, S., & Chung, J. (2005). Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene, 361, 133-139. https://doi.org/10.1016/j.gene.2005.06.040
Rajagopalan, V., Zhao, M., Reddy, S., Fajardo, G., Wang, X., Dewey, S., ... & Bernstein, D. (2013). Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure. American Journal of Physiology-Heart and Circulatory Physiology, 305(4), H551-H562. https://doi.org/10.1152/ajpheart.00771.2012
Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A., & Wang, X. (2013). Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation, 128(4), 365-376. https://doi.org/10.1161/CIRCULATIONAHA.113.001971
Reinheckel, T., Sitte, N., Ullrich, O., Kuckelkorn, U., Davies, K. J., & Grune, T. (1998). Comparative resistance of the 20S and 26S proteasome to oxidative stress. The Biochemical Journal, 335, 637-642. https://doi.org/10.1042/bj3350637
Rotstein, B., & Paululat, A. (2016). On the Morphology of the Drosophila Heart. Journal of cardiovascular development and disease, 3(2), 15. https://doi.org/10.3390/jcdd3020015
Sanders, P. M., Russell, S. T., & Tisdale, M. J. (2005). Angiotensin II directly induces muscle protein catabolism through the ubiquitin–proteasome proteolytic pathway and may play a role in cancer cachexia. British journal of cancer, 93(4), 425-434. https://doi.org/10.1038/sj.bjc.6602725
Schlossarek, S., & Carrier, L. (2011). The ubiquitin–proteasome system in cardiomyopathies. Current opinion in cardiology, 26(3), 190-195. https://doi.org/10.1097/hco.0b013e32834598fe
Schultheiss, H. P., Fairweather, D., Caforio, A. L., Escher, F., Hershberger, R. E., Lipshultz, S. E., ... & Priori, S. G. (2019). Dilated cardiomyopathy. Nature reviews Disease primers, 5(1), 1-19. https://doi.org/10.1038/s41572-019-0084-1
Sheik Mohideen, S., Yamasaki, Y., Omata, Y., Tsuda, L., & Yoshiike, Y. (2015). Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Scientific reports, 5(1), 1-14. https://doi.org/10.1038/srep10821
Tang, M., Li, J., Huang, W., Su, H., Liang, Q., Tian, Z., ... & Wang, X. (2010). Proteasome functional insufficiency activates the calcineurin–NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovascular research, 88(3), 424-433. https://doi.org/10.1093/cvr/cvq217
Tricoire, H., Palandri, A., Bourdais, A., Camadro, J. M., & Monnier, V. (2014). Methylene blue rescues heart defects in a Drosophila model of Friedreich's ataxia. Human Molecular Genetics, 23(4), 968-979. https://doi.org/10.1093/hmg/ddt493
Turner, J. M., & Kodali, R. (2020). Should angiotensin-converting enzyme inhibitors ever be used for the management of hypertension?. Current Cardiology Reports, 22(9), 1-8. https://doi.org/10.1007/s11886-020-01352-8
Vogler, G., & Ocorr, K. (2009). Visualizing the beating heart in Drosophila. JoVE (Journal of Visualized Experiments), (31), e1425. https://doi.org/10.3791/1425
Weintraub, R. G., Semsarian, C., & Macdonald, P. (2017). Dilated cardiomyopathy. The Lancet, 390(10092), 400-414. https://doi.org/10.1016/s0140-6736(16)31713-5
Wolf, M. J., Amrein, H., Izatt, J. A., Choma, M. A., Reedy, M. C., & Rockman, H. A. (2006). Drosophila as a model for the identification of genes causing adult human heart disease. Proceedings of the National Academy of Sciences, 103(5), 1394-1399. https://doi.org/10.1073/pnas.0507359103
Xiong, S., Van Pelt, C. S., Elizondo-Fraire, A. C., Fernandez-Garcia, B., & Lozano, G. (2007). Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation, 115(23), 2925-2930. https://doi.org/10.1161/CIRCULATIONAHA.107.689901
Yucel, D., Aydogdu, S., Cehreli, S., Saydam, G., Canatan, H., Senes, M., ... & Nebioglu, S. (1998). Increased oxidative stress in dilated cardiomyopathic heart failure. Clinical chemistry, 44(1), 148-154. https://doi.org/10.1155/2015/424751
Published
How to Cite
Issue
Section
Copyright (c) 2022 Tiffany Zhang, Aiden Pan; Nicole Spinelli
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.