Analyzing the Use of 5XFAD Model Mice in Determining Late-Stage Alzheimer’s Disease Treatment

Authors

  • Anika Mellacheruvu West Broward High School
  • Maria Bondoc West Broward High School
  • Eileen Torraca West Broward High School

DOI:

https://doi.org/10.47611/jsrhs.v11i3.3301

Keywords:

5XFAD, Late-Stage Alzheimer's, Alzheimer's Disease, Beta-amyloid plaques, Neurofibrillary tangles, Model mouse

Abstract

Nationally, Alzheimer’s Disease (AD) is growing in numbers across an elderly demographic. While treatments exist to mitigate degeneration, they usually are targeted towards early-stage Alzheimer’s and tend to neglect more severe stages of the disease. In these severe stages, beta-amyloid plaques and neurofibrillary tangles, two neurological indicators of AD, tend to aggregate more acutely than in previous stages. To help develop treatments, mouse models are utilized, typically. In order to test what type of model mouse could potentially be used to explore further treatment, the 5XFAD model mouse, one that produces an abundance of beta-amyloid plaques in its brain, was chosen. This paper intends to compare 5XFAD mice to the human brain in its severe stages of Alzheimer’s through a qualitative comparative analysis to juxtapose the neurological factors of both brains. It also utilizes interviews in order to compare severe AD patients and 5XFAD mice phenotypically, and in terms of their cognitive and behavioral deficits. The author finds that the 5XFAD model is very limited as a medium to discover new treatments, and can only be used to a certain extent. Due to AD being defined by both the aggregation of beta-amyloid plaques and neurofibrillary tangles, but only beta-amyloid plaques being present in 5XFAD mice brains, treatments that target the beta-amyloids in the brain can be discovered due to the highly-occurring similarities between the two, neurologically and behaviorally. However, a treatment that encompasses both contributing factors to Alzheimer’s Disease will not be able to be found.

Downloads

Download data is not yet available.

References or Bibliography

Adlimoghaddam, A., Neuendorff, M., Roy, B., & Albensi, B. (2018). A review of clinical treatment considerations of donepezil in severe Alzheimer's disease. CNS Neuroscience & therapeutics, 24(10), 876-888. https://doi.org/10.1111/cns.13035

Amram, S., & Frenkel, D. (2017). Neuroprotection in Alzheimer's disease. Academic Press.

Atri, A., Hendrix, S. B., Pejović, V., Hofbauer, R. K., Edwards, J., Molinuevo, J. L., & Graham, S. M. (2015). Cumulative, additive benefits of memantine-donepezil combination over component monotherapies in moderate to severe Alzheimer’s dementia: a pooled area under the curve analysis. Alzheimer's Research & Therapy, 7, 28. https://doi.org/10.1186/s13195-015-0109-2

Bryson, H. M., & Benfield, P. (1997). Donepezil. Drugs & Aging, 10, 234-239. https://doi.org/10.2165/00002512-199710030-00007

Burns, A., & Iliffe, S. (2009). Alzheimer's Disease. British Medical Journal, 338(7692), 467-471. http://www.jstor.org/stable/20512146

DeJonckheere, M., & Vaughn, L. M. (2019). Semistructured interviewing in primary care research: A balance of relationship and rigour. Family Medicine and Community Health, 7(2). https://doi.org/10.1136/fmch-2018-000057

DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14, 32. https://doi.org/10.1186/s13024-019-0333-5

Deygout, F., & Auburtin, G. (2020). Art therapy for elderly women diagnosed with Alzheimers: A positive person-centred approach increases ease in the care process. Annales médico-psychologiques, 178(10), 961-969. https://doi.org/10.1016/j.amp.2020.07.006

Ferreira Silva, M. V., Gomide Loures, C. M., Vieira Alves, L. C., De Souza, L. C., Gomes Borges, K. B., & Graças Carvalho, M. (2019). Alzheimer’s disease: Risk factors and potentially protective measures. Journal of Biomedical Science. https://doi.org/10.1186/s12929-019-0524-y

Forner, S., Kawauchi, S., Balderrama-Gutierrez, G., Kramár, E. A., Matheos, D. P., Phan, J., Javonillo, D. I., Tran, K. M., Hingco, E., Da Cunha, C., Rezaie, N., Alcantara, J. A., Baglietto-Vargas, D., Jansen, C., Neumann, J., Wood, M. A., MacGregor, G. R., Mortazavi, A., Tenner, A. J., … Green, K. N. (2021). Systematic Phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Scientific Data, 8, 270. https://doi.org/10.1101/2021.02.17.431716

Galasko, D., Schmitt, F., Thomas, R., Jin, S., Bennett, D., & Ferris, S. (2005). Detailed assessment of activities of daily living in moderate to severe Alzheimer's disease. Journal of the International Neuropsychological Society, 11(4), 446–453. https://doi.org/10.1017/S1355617705050502

Grant, R. A., Wong, A. A., Fertan, E., & Brown, R. E. (2018). Whisker exploration behaviours in the 5xFAD mouse are affected by sex and retinal degeneration. Genes, Brain, and Behavior, 19(3). https://doi.org/10.1111/gbb.12532

Gupta, A. (2013). Fraud and misconduct in clinical research: A concern. Perspectives in Clinical Research, 4(2), 144-147. https://doi.org/10.4103/2229-3485.111800

Jakob-Roetne, R., & Jacobsen, H. (2009). Alzheimer's disease: From pathology to therapeutic approaches. Angewandte Chemie International Edition, 48(17), 3030-3059. https://doi.org/10.1002/anie.200802808

Jankowsky, J., & Zheng, H. (2017). Practical considerations for choosing a mouse model of Alzheimer’s disease. Molecular Neurodegeneration, 12(1), 89. https://doi.org/10.1186/s13024-017-0231-7

Jović, M., Lončarević-Vasiljković, N., Ivković, S., Dinić, J., Milanović, D., Zlokovic, B., & Kanazir, S. (2019). Short-term fish oil supplementation applied in presymptomatic stage of Alzheimer's disease enhances microglial/macrophage barrier and prevents neuritic dystrophy in parietal cortex of 5xFAD mouse model. PLOS ONE, 14(5), e0216726. https://doi.org/10.1371/journal.pone.0216726

Junaković, A. (2021). The effects of art therapy on Parkinson's and Alzheimer's disease. Medicina Fluminensis, 57(3), 236-243. https://doi.org/10.21860/medflum2021_261184

Lee, J. K., Abuine, R., Rathnayake, A. U., Ryu, J. H., & Byun, H. G. (2021). A Skate Skin Hydrolysate Restores Cognitive Function in 5XFAD Alzheimer Disease Mice Model by Suppressing Amyloid-β Accumulation via Upregulation of ERK-CREB. International Journal of Peptide Research and Therapeutics, 27(2), 1419-1428. https://doi.org/10.1007/s10989-021-10178-z

Lim, J. K., Li, Q., He, Z., Vingrys, A. J., Chinnery, H. R., Mullen, J., Bui, B. V., & Nguyen, C. T. (2020). Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer’s Disease. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2020.00862

Lim, J. K., Li, Q., He, Z., Vingrys, A. J., Chinnery, H. R., Mullen, J., Bui, B. V., & Nguyen, C. T. (2020). Retinal functional and structural changes in the 5xFAD mouse model of Alzheimer’s disease. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00862

Metaxas, A., & Kempf, S. (2016). Neurofibrillary tangles in Alzheimer's disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regeneration Research, 11(10), 1579-1581. https://doi.org/10.4103/1673-5374.193234

Mullard, A. (2021, June 8). Landmark Alzheimer’s drug approval confounds research community. Nature. https://www.nature.com/articles/d41586-021-01546-2

Mylnarik, V., Janssens, S., Cacquevel, M., & Sun-Reiner, L. (2012). Proton and Phosphorus Magnetic Resonance Spectroscopy of a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's disease, 31, 87-99. https://doi.org/10.3233/JAD-2012-112072

National Institute on Aging. (2021). How is Alzheimer's disease treated? https://www.nia.nih.gov/health/how-alzheimers-disease-treated

National Institute on Aging. (n.d.). Alzheimer's scientific images and video. https://www.nia.nih.gov/alzheimers/alzheimers-scientific-images-and-video

Nussbaum, R., & Ellis, C. E. (2003). Alzheimer's Disease and Parkinson's Disease. New England Journal of Medicine, 348, 1356-1364. https://doi.org/10.1056/NEJM2003ra020003

Oblak, A. L., Lin, P. B., Kotredes, K. P., Pandey, R. S., Garceau, D., Williams, H. M., Uyar, A., O’Rourke, R., O’Rourke, S., Ingraham, C., Bednarczyk, D., Belanger, M., Cope, Z. A., Little, G. J., Williams, S. G., Ash, C., Bleckert, A., Ragan, T., Logsdon, B. A., … Lamb, B. T. (2021). Comprehensive evaluation of the 5XFAD mouse model for preclinical testing applications: A MODEL-AD study. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.713726

O'Leary, T. P., Mantolino, H. M., Stover, K. R., & Brown, R. E. (2018). Age-related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. Genes, Brain and Behavior, 19(3). https://doi.org/10.1111/gbb.12538

Park, S., Kim, H. Y., Oh, H. A., Shin, J., Park, I. W., Yoon, S., Woo, D. H., & Kim, Y. (2021). Quinacrine directly dissociates amyloid plaques in the brain of 5XFAD transgenic mouse model of Alzheimer’s disease. Scientific Reports, 11, 12043. https://doi.org/10.1038/s41598-021-91563-y

Penke, B., Bogár, F., & Fülöp, L. (2017). β-amyloid and the Pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules, 22(10), 1692. https://doi.org/10.3390/molecules22101692

Rees, T. M., & Brimijoin, S. (2003). The role of acetylcholinesterase in the pathogenesis of Alzheimer's disease. Drugs of Today, 39(1), 75. https://doi.org/10.1358/dot.2003.39.1.740206

Sengoku, R. (2019). Aging and Alzheimer's disease pathology. Neuropathology, 40(1), 22-29. https://doi.org/10.1111/neup.12626

Shoghi-Jadid, K., Small, G. W., Agdeppa, E. D., Kepe, V., Ercoli, L. M., Siddarth, P., Read, S., Satyamurthy, N., Petric, A., Huang, S., & Barrio, J. R. (2002). Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. The American Journal of Geriatric Psychiatry, 10(1), 24-35. https://doi.org/10.1097/00019442-200201000-00004

Sugimoto, H. (2010). Development of Anti-Alzheimer's disease drug based on beta-amyloid hypothesis. YAKUGAKU ZASSHI, 130(4), 521-526. https://doi.org/10.1248/yakushi.130.521

Thomasy, H. (2021, October/November 6). Piecing it together. New Scientist, 252(3359), 7-56.

Ullah, R., Ali, G., Khan, A., Ahmad, S., & Al-Harrasi, A. (2021). Cyclopentanone derivative attenuates memory impairment by inhibiting amyloid plaques formation in the 5xFAD mice. International Journal of Molecular Sciences, 22(17), 9559. https://doi.org/10.3390/ijms22179559

Voisin, T., & Vellas, B. (2009). Diagnosis and treatment of patients with severe Alzheimer’s disease. Drugs Aging, 26(2), 135-144. https://doi.org/10.2165/0002512-200926020-00005

Walk, K. (1998). How to write a comparative analysis. Harvard College Writing Center. https://writingcenter.fas.harvard.edu/pages/how-write-comparative-analysis

Published

08-31-2022

How to Cite

Mellacheruvu, A., Bondoc, M., & Torraca, E. (2022). Analyzing the Use of 5XFAD Model Mice in Determining Late-Stage Alzheimer’s Disease Treatment. Journal of Student Research, 11(3). https://doi.org/10.47611/jsrhs.v11i3.3301

Issue

Section

AP Capstone™ Research