Eye as a window to the brain: Review of retinal changes in Alzheimer’s dementia
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3212Keywords:
Alzheimer's disease; Imaging; Retina; Optical Coherence Tomography; Macular degenerationAbstract
Alzheimer's disease (AD) is the most common neurodegenerative disease causing significant morbidity and mortality in the elderly, affecting million worldwide. Diagnosis of AD is mainly by clinical symptoms, use of tests to detect loss of higher mental functions, and confirmed by neuroimaging studies such as magnetic resonance imaging and positron emission tomography. Current research in AD aims at early detection of pathological changes in the brain and development of disease-modifying drugs. Testing the effectiveness of these drugs requires the development of a noninvasive and cost-effective screening tool. Retinal changes in patients with AD mirror those found in the brain and offers a window for early detection of AD before cognitive changes set it. This article reviews the pathological correlation between retinal changes and AD and the current advances in retinal imaging to detect AD.
Downloads
References or Bibliography
Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B. Prevention of sporadic Alzheimer's disease: lessons learned from clinical trials and future directions. Lancet Neurol. 2015 Sep;14(9):926-944. https://doi:10.1016/S1474-4422(15)00153-2t.
Rabinovici, G. D., Rosen, H. J., Alkalay, A., Kornak, J., Furst, A. J., Agarwal, N., Mormino, E. C., O'Neil, J. P., Janabi, M., Karydas, A., Growdon, M. E., Jang, J. Y., Huang, E. J., Dearmond, S. J., Trojanowski, J. Q., Grinberg, L. T., Gorno-Tempini, M. L., Seeley, W. W., Miller, B. L., & Jagust, W. J. (2011). Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology, 77(23), 2034–2042. https://doi.org/10.1212/WNL.0b013e31823b9c5e.
Hintersteiner, M., Enz, A., Frey, P., Jaton, A. L., Kinzy, W., Kneuer, R., Neumann, U., Rudin, M., Staufenbiel, M., Stoeckli, M., Wiederhold, K. H., & Gremlich, H. U. (2005). In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nature biotechnology, 23(5), 577–583. https://doi.org/10.1038/nbt1085.
Liao, H., Zhu, Z., & Peng, Y. (2018). Potential Utility of Retinal Imaging for Alzheimer's Disease: A Review. Frontiers in aging neuroscience, 10, 188. https://doi.org/10.3389/fnagi.2018.00188.
Tierney, A. L., & Nelson, C. A., 3rd (2009). Brain Development and the Role of Experience in the Early Years. Zero to three, 30(2), 9–13.
Nag, T. C., & Wadhwa, S. (2012). Ultrastructure of the human retina in aging and various pathological states. Micron (Oxford, England : 1993), 43(7), 759–781. https://doi.org/10.1016/j.micron.2012.01.011.
Jack, C. R., Jr, Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, V. S., Donohue, M. C., & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. The Lancet. Neurology, 12(2), 207–216. https://doi.org/10.1016/S1474-4422(12)70291-0.
Chow, V. W., Mattson, M. P., Wong, P. C., & Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular medicine, 12(1), 1–12. https://doi.org/10.1007/s12017-009-8104-z.
Brion, J. P., Anderton, B. H., Authelet, M., Dayanandan, R., Leroy, K., Lovestone, S., Octave, J. N., Pradier, L., Touchet, N., & Tremp, G. (2001). Neurofibrillary tangles and tau phosphorylation. Biochemical Society symposium, (67), 81–88. https://doi.org/10.1042/bss0670081.
Tsai, Y., Lu, B., Ljubimov, A. V., Girman, S., Ross-Cisneros, F. N., Sadun, A. A., Svendsen, C. N., Cohen, R. M., & Wang, S. (2014). Ocular changes in TgF344-AD rat model of Alzheimer's disease. Investigative ophthalmology & visual science, 55(1), 523–534. https://doi.org/10.1167/iovs.13-12888.
La Morgia, C., Ross-Cisneros, F. N., Koronyo, Y., Hannibal, J., Gallassi, R., Cantalupo, G., Sambati, L., Pan, B. X., Tozer, K. R., Barboni, P., Provini, F., Avanzini, P., Carbonelli, M., Pelosi, A., Chui, H., Liguori, R., Baruzzi, A., Koronyo-Hamaoui, M., Sadun, A. A., & Carelli, V. (2016). Melanopsin retinal ganglion cell loss in Alzheimer disease. Annals of neurology, 79(1), 90–109. https://doi.org/10.1002/ana.24548.
Bayer, T. A., Breyhan, H., Duan, K., Rettig, J., & Wirths, O. (2008). Intraneuronal beta-amyloid is a major risk factor--novel evidence from the APP/PS1KI mouse model. Neuro-degenerative diseases, 5(3-4), 140–142. https://doi.org/10.1159/000113684.
Spires, T. L., & Hyman, B. T. (2005). Transgenic models of Alzheimer's disease: learning from animals. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics, 2(3), 423–437. https://doi.org/10.1602/neurorx.2.3.423.
Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 39(3), 409–421. https://doi.org/10.1016/s0896-6273(03)00434-3.
Chiu, K., Chan, T. F., Wu, A., Leung, I. Y., So, K. F., & Chang, R. C. (2012). Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?. Age (Dordrecht, Netherlands), 34(3), 633–649. https://doi.org/10.1007/s11357-011-9260-2.
Ning, A., Cui, J., To, E., Ashe, K. H., & Matsubara, J. (2008). Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Investigative ophthalmology & visual science, 49(11), 5136–5143. https://doi.org/10.1167/iovs.08-1849.
Ashok, A., Singh, N., Chaudhary, S., Bellamkonda, V., Kritikos, A. E., Wise, A. S., Rana, N., McDonald, D., & Ayyagari, R. (2020). Retinal Degeneration and Alzheimer's Disease: An Evolving Link. International journal of molecular sciences, 21(19), 7290. https://doi.org/10.3390/ijms21197290.
López-Cuenca, I., Salobrar-García, E., Gil-Salgado, I., Sánchez-Puebla, L., Elvira-Hurtado, L., Fernández-Albarral, J. A., Ramírez-Toraño, F., Barabash, A., de Frutos-Lucas, J., Salazar, J. J., Ramírez, J. M., Ramírez, A. I., & de Hoz, R. (2022). Characterization of Retinal Drusen in Subjects at High Genetic Risk of Developing Sporadic Alzheimer's Disease: An Exploratory Analysis. Journal of personalized medicine, 12(5), 847. https://doi.org/10.3390/jpm12050847.
Jones-Odeh, E., & Hammond, C. J. (2015). How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis?. Eye (London, England), 29(10), 1270–1284. https://doi.org/10.1038/eye.2015.158.
Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox biology, 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014.
Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2020). Calcium Dynamics and Synaptic Plasticity. Advances in experimental medicine and biology, 1131, 965–984. https://doi.org/10.1007/978-3-030-12457-1_38.
Liu, J., Chang, L., Song, Y., Li, H., & Wu, Y. (2019). The Role of NMDA Receptors in Alzheimer's Disease. Frontiers in neuroscience, 13, 43. https://doi.org/10.3389/fnins.2019.00043.
Anderson, D. H., Talaga, K. C., Rivest, A. J., Barron, E., Hageman, G. S., & Johnson, L. V. (2004). Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Experimental eye research, 78(2), 243–256. https://doi.org/10.1016/j.exer.2003.10.011.
Sivak J. M. (2013). The aging eye: common degenerative mechanisms between the Alzheimer's brain and retinal disease. Investigative ophthalmology & visual science, 54(1), 871–880. https://doi.org/10.1167/iovs.12-10827.
McKinnon S. J. (2003). Glaucoma: ocular Alzheimer's disease?. Frontiers in bioscience : a journal and virtual library, 8, s1140–s1156. https://doi.org/10.2741/1172.
Sadun, A. A., Borchert, M., DeVita, E., Hinton, D. R., & Bassi, C. J. (1987). Assessment of visual impairment in patients with Alzheimer's disease. American journal of ophthalmology, 104(2), 113–120. https://doi.org/10.1016/0002-9394(87)90001-8.
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., & Puliafito, C. A. (1991). Optical coherence tomography. Science (New York, N.Y.), 254(5035), 1178–1181. https://doi.org/10.1126/science.1957169.
Puliafito, C. A., Hee, M. R., Lin, C. P., Reichel, E., Schuman, J. S., Duker, J. S., Izatt, J. A., Swanson, E. A., & Fujimoto, J. G. (1995). Imaging of macular diseases with optical coherence tomography. Ophthalmology, 102(2), 217–229. https://doi.org/10.1016/s0161-6420(95)31032-9.
Meyer, J., Karri, R., Danesh-Meyer, H., Drummond, K., & Symons, A. (2021). A normative database of A-scan data using the Heidelberg Spectralis Spectral Domain Optical Coherence Tomography machine. PloS one, 16(7), e0253720. https://doi.org/10.1371/journal.pone.0253720.
Almeida, A., Pires, L. A., Figueiredo, E. A., Costa-Cunha, L., Zacharias, L. C., Preti, R. C., Monteiro, M., & Cunha, L. P. (2019). Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment. Alzheimer's & dementia (Amsterdam, Netherlands), 11, 659–669. https://doi.org/10.1016/j.dadm.2019.08.006.
O'Bryhim, B. E., Lin, J. B., Van Stavern, G. P., & Apte, R. S. (2021). OCT Angiography Findings in Preclinical Alzheimer's Disease: 3-Year Follow-Up. Ophthalmology, 128(10), 1489–1491. https://doi.org/10.1016/j.ophtha.2021.02.016.
Grover, S., Murthy, R. K., Brar, V. S., & Chalam, K. V. (2009). Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). American journal of ophthalmology, 148(2), 266–271. https://doi.org/10.1016/j.ajo.2009.03.006.
Chan, V., Sun, Z., Tang, S., Chen, L. J., Wong, A., Tham, C. C., Wong, T. Y., Chen, C., Ikram, M. K., Whitson, H. E., Lad, E. M., Mok, V., & Cheung, C. Y. (2019). Spectral-Domain OCT Measurements in Alzheimer's Disease: A Systematic Review and Meta-analysis. Ophthalmology, 126(4), 497–510. https://doi.org/10.1016/j.ophtha.2018.08.009.
Cunha, L. P., Lopes, L. C., Costa-Cunha, L. V., Costa, C. F., Pires, L. A., Almeida, A. L., & Monteiro, M. L. (2016). Macular Thickness Measurements with Frequency Domain-OCT for Quantification of Retinal Neural Loss and its Correlation with Cognitive Impairment in Alzheimer's Disease. PloS one, 11(4), e0153830. https://doi.org/10.1371/journal.pone.0153830.
Gao, L., Liu, Y., Li, X., Bai, Q., & Liu, P. (2015). Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer's disease. Archives of gerontology and geriatrics, 60(1), 162–167. https://doi.org/10.1016/j.archger.2014.10.011.
Iseri, P. K., Altinaş, O., Tokay, T., & Yüksel, N. (2006). Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society, 26(1), 18–24. https://doi.org/10.1097/01.wno.0000204645.56873.26.
Kromer, R., Serbecic, N., Hausner, L., Froelich, L., Aboul-Enein, F., & Beutelspacher, S. C. (2014). Detection of Retinal Nerve Fiber Layer Defects in Alzheimer's Disease Using SD-OCT. Frontiers in psychiatry, 5, 22. https://doi.org/10.3389/fpsyt.2014.00022.
Hood D. C. (2000). Assessing retinal function with the multifocal technique. Progress in retinal and eye research, 19(5), 607–646. https://doi.org/10.1016/s1350-9462(00)00013-6.
Byun, M. S., Park, S. W., Lee, J. H., Yi, D., Jeon, S. Y., Choi, H. J., Joung, H., Ghim, U. H., Park, U. C., Kim, Y. K., Shin, S. A., Yu, H. G., Lee, D. Y., & KBASE Research Group (2021). Association of Retinal Changes With Alzheimer Disease Neuroimaging Biomarkers in Cognitively Normal Individuals. JAMA ophthalmology, 139(5), 548–556. https://doi.org/10.1001/jamaophthalmol.2021.0320.
Bissig, D., Zhou, C. G., Le, V., & Bernard, J. T. (2020). Optical coherence tomography reveals light-dependent retinal responses in Alzheimer's disease. NeuroImage, 219, 117022. https://doi.org/10.1016/j.neuroimage.2020.117022.
Ascaso, F. J., Cruz, N., Modrego, P. J., Lopez-Anton, R., Santabárbara, J., Pascual, L. F., Lobo, A., & Cristóbal, J. A. (2014). Retinal alterations in mild cognitive impairment and Alzheimer's disease: an optical coherence tomography study. Journal of neurology, 261(8), 1522–1530. https://doi.org/10.1007/s00415-014-7374-z.
Bulut, M., Kurtuluş, F., Gözkaya, O., Erol, M. K., Cengiz, A., Akıdan, M., & Yaman, A. (2018). Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia. The British journal of ophthalmology, 102(2), 233–237. https://doi.org/10.1136/bjophthalmol-2017-310476.
Lahme, L., Esser, E. L., Mihailovic, N., Schubert, F., Lauermann, J., Johnen, A., Eter, N., Duning, T., & Alnawaiseh, M. (2018). Evaluation of Ocular Perfusion in Alzheimer's Disease Using Optical Coherence Tomography Angiography. Journal of Alzheimer's disease : JAD, 66(4), 1745–1752. https://doi.org/10.3233/JAD-180738.
O'Bryhim, B. E., Apte, R. S., Kung, N., Coble, D., & Van Stavern, G. P. (2018). Association of Preclinical Alzheimer Disease With Optical Coherence Tomographic Angiography Findings. JAMA ophthalmology, 136(11), 1242–1248. https://doi.org/10.1001/jamaophthalmol.2018.3556.
Koronyo-Hamaoui, M., Koronyo, Y., Ljubimov, A. V., Miller, C. A., Ko, M. K., Black, K. L., Schwartz, M., & Farkas, D. L. (2011). Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage, 54 Suppl 1, S204–S217. https://doi.org/10.1016/j.neuroimage.2010.06.020.
Khurshid, B., Rehman, A. U., Muhammad, S., Wadood, A., & Anwar, J. (2022). Toward the Noninvasive Diagnosis of Alzheimer's Disease: Molecular Basis for the Specificity of Curcumin for Fibrillar Amyloid-β. ACS omega, 7(25), 22032–22038. https://doi.org/10.1021/acsomega.2c02995.
Koronyo, Y., Salumbides, B. C., Black, K. L., & Koronyo-Hamaoui, M. (2012). Alzheimer's disease in the retina: imaging retinal aβ plaques for early diagnosis and therapy assessment. Neuro-degenerative diseases, 10(1-4), 285–293. https://doi.org/10.1159/000335154.
More, S. S., & Vince, R. (2015). Hyperspectral imaging signatures detect amyloidopathy in Alzheimer's mouse retina well before onset of cognitive decline. ACS chemical neuroscience, 6(2), 306–315. https://doi.org/10.1021/cn500242z.
Hadoux, X., Hui, F., Lim, J., Masters, C. L., Pébay, A., Chevalier, S., Ha, J., Loi, S., Fowler, C. J., Rowe, C., Villemagne, V. L., Taylor, E. N., Fluke, C., Soucy, J. P., Lesage, F., Sylvestre, J. P., Rosa-Neto, P., Mathotaarachchi, S., Gauthier, S., Nasreddine, Z. S., … van Wijngaarden, P. (2019). Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease. Nature communications, 10(1), 4227. https://doi.org/10.1038/s41467-019-12242-1.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Dhruv Sastry; Dr. Ravi Keshavamurthy
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.