Development of DNMT Inhibitors for Breast Cancer Therapy Using In-Silico Methods of Drug Research

Authors

  • Neanth Suresh Thomas Jefferson High School for Science and Technology
  • Omkar Kovvali

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3185

Keywords:

Cancer, Oncology, DNMT, Epigenetics, Inhibitor, In-Silico, Molecular Docking

Abstract

DNA Methyltransferase activity has been linked to the proliferation of breast cancers. Based on this, inhibiting DNMTs would be a strong preventative measure for cancer, as well as a possible treatment. Synthesizing drugs that can impede DNMTs is time-consuming and expensive to do in vitro and in vivo, so molecular biologists are resorting to in-silico methods of drug development. In-silico methods have been used to study DNMT inhibition, such as with compounds like ISL and RG108, as well as with large sets of thousands of compounds, as it saves time and money.

Downloads

Download data is not yet available.

References or Bibliography

Alkaff, A. H., Saragih, M., Imana, S. N., Nasution, M., & Tambunan, U. (2021). Identification of DNA

Methyltransferase-1 Inhibitor for Breast Cancer Therapy through Computational Fragment-Based Drug Design. Molecules (Basel, Switzerland), 26(2), 375. https://doi.org/10.3390/molecules26020375

Alshiraihi, I. M., Jarrell, D. K., Arhouma, Z., Hassell, K. N., Montgomery, J., Padilla, A., Ibrahim, H. M., Crans, D.

C., Kato, T. A., & Brown, M. A. (2020). In Silico/In Vitro Hit-to-Lead Methodology Yields SMYD3 Inhibitor That Eliminates Unrestrained Proliferation of Breast Carcinoma Cells. International journal of molecular sciences, 21(24), 9549. https://doi.org/10.3390/ijms21249549

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical

beauty of drugs. Nature chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243

Brown, M. A., Sims, R. J., 3rd, Gottlieb, P. D., & Tucker, P. W. (2006). Identification and characterization of

Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Molecular cancer, 5, 26. https://doi.org/10.1186/1476-4598-5-26

Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F.

(2005). Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 65(14), 6305-11. https://doi.org/10.1158/0008-5472.CAN-04-2957

Ghose, A.K., Viswanadhan, V.N., & Wendoloski, J.J. (1999). A Knowledge-Based Approach in Designing

Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of Combinatorial Chemistry, 1(1), 55-68. https://doi.org/10.1021/cc9800071

Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2018). ADMET-score - a comprehensive

scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/c8md00472b

He, W., Kang, Y., Zhu, W., Zhou, B., Jiang, X., Ren, C., & Guo, W. (2020). FOXF2 acts as a crucial molecule in

tumours and embryonic development. Cell death & disease, 11(6), 424. https://doi.org/10.1038/s41419-020-2604-z

Hu, D., Gur, M., Zhou, Z., Gamper, A., Hung, M. C., Fujita, N., Lan, L., Bahar, I., & Wan, Y. (2015). Interplay

between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nature communications, 6, 8419. https://doi.org/10.1038/ncomms9419

Karthi, N., Karthiga, A., Kalaiyarasu, T., Stalin, A., Manju, V., Singh, S.K., Cyril, R., & Lee, S. (2017). Exploration

of cell cycle regulation and modulation of the DNA methylation mechanism of pelargonidin: Insights from the molecular modeling approach. Computational Biology and Chemistry, 70, 175-185. https://doi.org/10.1016/j.compbiolchem.2017.08.002

Lipinksi, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (1997). Experimental and computational approaches to

estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3-25). https://doi.org/10.1016/S0169-409X(96)00423-1

Lo, P. K., & Sukumar, S. (2008). Epigenomics and breast cancer. Pharmacogenomics, 9(12), 1879–1902.

https://doi.org/10.2217/14622416.9.12.1879

Luo, X., Zhang, C., Zhao, W., Liu, Z., Liu, L., Mu, A., Guo, S., Wang, N., Zhou, H., Zhang, T. (2014). Histone

methyltransferase SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and migration of MCF-7 breast cancer cells. Cancer Letters, 344(1), 129-137, ISSN 0304-3835, https://doi.org/10.1016/j.canlet.2013.10.026.

Mehrotra, J., Ganpat, M.M., Kanaan, Y., Fackler, M.J., McVeigh, M., Lahti-Domenici, J., Polyak, K., Argani, P.,

Naab, T., Garrett, E., Parmigiani, G., Broome, C., Sukumar, S. (2004). Estrogen receptor/progesterone receptor-negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin. Cancer Res. 10, 2052–2057. https://doi.org/10.1158/1078-0432.CCR-03-0514

Otani, J., Nankumo, T., Arita, K., Inamoto, S., Ariyoshi, M., & Shirakawa, M. (2009). Structural basis for

recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO reports, 10(11), 1235–1241. https://doi.org/10.1038/embor.2009.218

Raunio H. (2011). In silico toxicology - non-testing methods. Frontiers in pharmacology, 2, 33.

https://doi.org/10.3389/fphar.2011.00033

Selvakumar, P., Badgeley, A., Murphy, P., Anwar, H., Sharma, U., Lawrence, K., & Lakshmikuttyamma, A. (2020).

Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients, 12(3), 761. https://doi.org/10.3390/nu12030761

Tian, H. P., Lun, S. M., Huang, H. J., He, R., Kong, P. Z., Wang, Q. S., Li, X. Q., & Feng, Y. M. (2015). DNA

Methylation Affects the SP1-regulated Transcription of FOXF2 in Breast Cancer Cells. The Journal of biological chemistry, 290(31), 19173–19183. https://doi.org/10.1074/jbc.M114.636126

Wang, N., Wang, Z., Wang, Y., Xie, X., Shen, J., Peng, C., You, J., Peng, F., Tang, H., Guan, X., & Chen, J. (2015).

Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget, 6(12), 9854–9876. https://doi.org/10.18632/oncotarget.3396

Yu, F., Li, J., Chen, H., Fu, J., Ray, S., Huang, S., Zheng, H., & Ai, W. (2011). Kruppel-like factor 4 (KLF4) is

required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene, 30(18), 2161–2172. https://doi.org/10.1038/onc.2010.591

Zhou, Z., Feng, Z., Hu, D., Yang, P., Gur, M., Bahar, I., Cristofanilli, M., Gradishar, W. J., Xie, X. Q., & Wan, Y.

(2019). A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted therapy. EBioMedicine, 44, 98–111. https://doi.org/10.1016/j.ebiom.2019.05.011

Published

11-30-2022

How to Cite

Suresh, N., & Kovvali, O. (2022). Development of DNMT Inhibitors for Breast Cancer Therapy Using In-Silico Methods of Drug Research. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3185

Issue

Section

HS Review Articles