The Applications of the CRISPR/Cas9 Gene-Editing System in Treating Human Diseases
DOI:
https://doi.org/10.47611/jsrhs.v11i3.3166Keywords:
CRISPR/Cas9, gene editing, disease treatmentAbstract
In the early 2010s, scientists realized that CRISPR/Cas9, a bacterial immune defense system against viruses that involves the CRISPR-associated protein #9 (Cas9) endonuclease enzyme, single-guide RNAs (sgRNAs), and PAM recognition, could be used to intentionally manipulate genes, essentially changing gene expression and regulation in such a way that would allow for a customized genome. Since then, CRISPR technology has revolutionized medical research and the biotechnology industry, and its newfound capabilities have scientists asking if CRISPR can be used to modify genes in such a way that would cure or treat certain harmful or life-threatening diseases. There have been CRISPR-based clinical studies done to treat β-thalassemia (TDT), sickle-cell disease (SCD), the human immunodeficiency virus (HIV), and several other genetic and non-hereditary diseases, but there is still a long way to go before CRISPR can become a widespread treatment for many more such diseases (Ebina et al., 2013; Esrick et al., 2021; Frangoul et al., 2021). Currently, researchers are looking to see if CRISPR is an accurate, specific, non-harmful, and effective treatment for these diseases, which means addressing and eliminating potential concerns about its safety and efficacy through extensive pre-clinical and clinical research, as well as overcoming moral and social obstacles. In this review, I will look at how the CRISPR/Cas9 gene-editing system can be applied in humans to prevent, cure, or treat these diseases, as well as what needs to be done before the CRISPR/Cas9 system can be made publicly available as a medical treatment for diseases.
Downloads
References or Bibliography
Ball, P. (2016, November 17). CRISPR: Implications for materials science. Cambridge Core. https://www.cambridge.org/core/journals/mrs-bulletin/news/crispr-implications-for-materials-science
Blanchard, E. L., Vanover, D., Bawage, S. S., Tiwari, P. M., Rotolo, L., Beyersdorf, J., Peck, H. E., Bruno, N. C., Hincapie, R., Michel, F., Murray, J., Sadhwani, H., Vanderheyden, B., Finn, M. G., Brinton, M. A., Lafontaine, E. R., Hogan, R. J., Zurla, C., & Santangelo, P. J. (2021). Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology, 39(6), 717–726. https://doi.org/10.1038/s41587-021-00822-w
Brokowski, C., & Adli, M. (2019). CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology, 431(1), 88–101. https://doi.org/10.1016/j.jmb.2018.05.044
Carlaw, T. M., Zhang, L.-H., & Ross, C. J. D. (2020). CRISPR/Cas9 Editing: Sparking Discussion on Safety in Light of the Need for New Therapeutics. Human Gene Therapy, 31(15–16), 794–807. https://doi.org/10.1089/hum.2020.111
Dabrowska, M., Juzwa, W., Krzyzosiak, W. J., & Olejniczak, M. (2018). Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00075
Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., & Root, D. E. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 34(2), 184–191. https://doi.org/10.1038/nbt.3437
Ebina, H., Misawa, N., Kanemura, Y., & Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports, 3(1), 2510. https://doi.org/10.1038/srep02510
Esrick, E. B., Lehmann, L. E., Biffi, A., Achebe, M., Brendel, C., Ciuculescu, M. F., Daley, H., MacKinnon, B., Morris, E., Federico, A., Abriss, D., Boardman, K., Khelladi, R., Shaw, K., Negre, H., Negre, O., Nikiforow, S., Ritz, J., Pai, S.-Y., … Williams, D. A. (2021). Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. New England Journal of Medicine, 384(3), 205–215. https://doi.org/10.1056/NEJMoa2029392
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., Ho, T. W., Kattamis, A., Kernytsky, A., Lekstrom-Himes, J., Li, A. M., Locatelli, F., Mapara, M. Y., de Montalembert, M., Rondelli, D., … Corbacioglu, S. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. The New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054
Greely, H. T. (2019). CRISPR’d babies: Human germline genome editing in the ‘He Jiankui affair’*. Journal of Law and the Biosciences, 6(1), 111–183. https://doi.org/10.1093/jlb/lsz010
Haurwitz, R. E., Sternberg, S. H., & Doudna, J. A. (2012). Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. The EMBO Journal, 31(12), 2824–2832. https://doi.org/10.1038/emboj.2012.107
He, S. (2020). The first human trial of CRISPR-based cell therapy clears safety concerns as new treatment for late-stage lung cancer. Signal Transduction and Targeted Therapy, 5(1), 1–2. https://doi.org/10.1038/s41392-020-00283-8
Hongfan, C., Choi, J., & Bailey, S. (2014). Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided Endonuclease. The Journal of Biological Chemistry, 289, 13284–13294. https://employees.csbsju.edu/hjakubowski/classes/ch331/Lit_Learn_Module/LLM_CRISPR_Cas1_KEY.html
Importance of the PAM Sequence in CRISPR Experiments. (n.d.). In How To Use CRISPR: Your Guide to Successful Genome Engineering. Synthego. https://www.synthego.com/guide/how-to-use-crispr/pam-sequence
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
Kick, L., Kirchner, M., & Schneider, S. (2017). CRISPR-Cas9: From a bacterial immune system to genome-edited human cells in clinical trials. Bioengineered, 8(3), 280–286. https://doi.org/10.1080/21655979.2017.1299834
Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J.-I., & Kim, J.-S. (2015). Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature Methods, 12(3), 237–243. https://doi.org/10.1038/nmeth.3284
Long, C., Li, H., Tiburcy, M., Rodriguez-Caycedo, C., Kyrychenko, V., Zhou, H., Zhang, Y., Min, Y.-L., Shelton, J. M., Mammen, P. P. A., Liaw, N. Y., Zimmermann, W.-H., Bassel-Duby, R., Schneider, J. W., & Olson, E. N. (2018). Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Science Advances. https://doi.org/10.1126/sciadv.aap9004
Lu, Y., Xue, J., Deng, T., Zhou, X., Yu, K., Deng, L., Huang, M., Yi, X., Liang, M., Wang, Y., Shen, H., Tong, R., Wang, W., Li, L., Song, J., Li, J., Su, X., Ding, Z., Gong, Y., … Mok, T. (2020). Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nature Medicine, 26(5), 732–740. https://doi.org/10.1038/s41591-020-0840-5
O’Connell, M. R., Oakes, B. L., Sternberg, S. H., East-Seletsky, A., Kaplan, M., & Doudna, J. A. (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530), 263–266. https://doi.org/10.1038/nature13769
On Biostatistics and Clinical Trials. (2019, August 21). https://pubrica.com/academy/statistical/on-biostatistics-and-clinical-trials/
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31(9), 839–843. https://doi.org/10.1038/nbt.2673
Phase 3 Clinical Trials Opening for Hepatitis Delta Patients. (2019, March 21). Hepatitis B Foundation. https://www.hepb.org/blog/phase-3-clinical-trials-opening-hepatitis-delta-patients/
Shabbir, M., Shabbir, M. A. B., Hao, H., Shabbir, M. Z., Hussain, H., Iqbal, Z., Ahmed, S., Sattar, A., Iqbal, M., Li, J., & Yuan, Z. (2016). Survival and Evolution of CRISPR?Cas System in Prokaryotes and Its Applications. Frontiers in Immunology, 7. https://doi.org/10.3389/fimmu.2016.00375
Tsai, S. Q., Nguyen, N. T., Malagon-Lopez, J., Topkar, V. V., Aryee, M. J., & Joung, J. K. (2017). CIRCLE-seq: A highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nature Methods, 14(6), 607–614. https://doi.org/10.1038/nmeth.4278
Vertex Pharmaceuticals Incorporated. (2022a). A Phase 1/2/3 Study of the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (hHSPCs) in Subjects With Transfusion-Dependent β-Thalassemia (Clinical Trial Registration No. NCT03655678). clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT03655678
Vertex Pharmaceuticals Incorporated. (2022b). A Phase 1/2/3 Study to Evaluate the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (CTX001) in Subjects With Severe Sickle Cell Disease (Clinical Trial Registration No. NCT03745287). clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT03745287
Vouillot, L., Thélie, A., & Pollet, N. (2015). Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases. G3 Genes|Genomes|Genetics, 5(3), 407–415. https://doi.org/10.1534/g3.114.015834
Vyas, K. (2019, July 4). Designer Babies: Gene-Editing and the Controversial Use of CRISPR. https://interestingengineering.com/designer-babies-gene-editing-and-the-controversial-use-of-crispr
Williams, D. (2022). Pilot and Feasibility Study of Hematopoietic Stem Cell Gene Transfer for Sickle Cell Disease (Clinical Trial Registration No. NCT03282656). clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT03282656
Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., & Li, J. (2013). Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9. Cell Stem Cell, 13(6), 659–662. https://doi.org/10.1016/j.stem.2013.10.016
Xie, N., Zhou, Y., Sun, Q., & Tang, B. (2018). Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System. Stem Cells International, 2018, 7834175. https://doi.org/10.1155/2018/7834175
Zabaleta, N., Barberia, M., Martin-Higueras, C., Zapata-Linares, N., Betancor, I., Rodriguez, S., Martinez-Turrillas, R., Torella, L., Vales, A., Olagüe, C., Vilas-Zornoza, A., Castro-Labrador, L., Lara-Astiaso, D., Prosper, F., Salido, E., Gonzalez-Aseguinolaza, G., & Rodriguez-Madoz, J. R. (2018). CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nature Communications, 9(1), 5454. https://doi.org/10.1038/s41467-018-07827-1
Zhang, S., Li, X., Lin, Q., & Wong, K.-C. (2019). Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications. Bioinformatics, 35(7), 1108–1115. https://doi.org/10.1093/bioinformatics/bty748
Zhang, X.-H., Tee, L. Y., Wang, X.-G., Huang, Q.-S., & Yang, S.-H. (2015). Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Molecular Therapy - Nucleic Acids, 4, e264. https://doi.org/10.1038/mtna.2015.37
Published
How to Cite
Issue
Section
Copyright (c) 2022 Akanksha Varanasi; Elisabeth Wilson
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.