Gallic Acid: A Viable Drug for Inducing Apoptosis to Human Neuroblastoma Cancer Cells

Authors

  • Henry He Choate Rosemary Hall

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3134

Keywords:

Gallic Acid, Doxorubicin, neuroblastoma, glioblastoma

Abstract

Glioblastoma is a malicious brain tumor commonly found in adults. Because of its intrusive behavior and troublesome location, the five-year survival rate for Glioblastoma is meager. Data are collected through Pubmed and Pubchem; 34 different chemicals were chosen to be paired up against the PD-L1, an ICs that causes immune evasion of the tumor cells and receptors; and loaded into PyRx v.08 molecular docking tool to find the binding affinity. Gallic acid and Doxorubicin were chosen as the two mixtures used to conduct the assays. Gallic acid was selected because of its above-average binding affinity with the receptor, it is available at the Lab where I experimented, and the limited research done connecting Gallic acid with tumor cells. On the other hand, Doxorubicin was chosen to compare results with gallic acid; since it is already a conventional tumor drug, having a better impact will mean that Gallic Acid will be a superior option to tumor drugs used today. The two mixtures underwent a serial dilution process, making eight different solutions. LDH, MTT, and Caspase assays were conducted with these mixtures on the HTB-11 tumor cell line; with the result being that Gallic ACid ten thousand times diluted is the best drug as it has caused the lowest percentage of necrosis (2.4% of LDH released) as well as having caused one of the highest percentages of apoptosis (758% in caspase activity).

Downloads

Download data is not yet available.

References or Bibliography

Berghoff, A. S., Kiesel, B., Widhalm, G., Rajky, O., Ricken, G., Wöhrer, A., Dieckmann, K., Filipits, M., Brandstetter, A., Weller, M., Kurscheid, S., Hegi, M. E., Zielinski, C. C., Marosi, C., Hainfellner, J. A., Preusser, M., & Wick, W. (2015). Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-oncology, 17(8), 1064–1075. https://doi.org/10.1093/neuonc/nou307

Chen, C., Lu, L., Yan, S., Yi, H., Yao, H., Wu, D., He, G., Tao, X., & Deng, X. (2018). Autophagy and doxorubicin resistance in cancer. Anti-cancer drugs, 29(1), 1–9. https://doi.org/10.1097/CAD.0000000000000572

Chene, G., Lamblin, G., Le Bail-Carval, K., Beaufils, E., Chabert, P., Gaucherand, P., Mellier, G., & Coppens, Y. (2016). Le(s) cancer(s) de Lucy : une origine préhistorique ? [Lucy's cancer(s): A prehistorical origin?]. Gynecologie, obstetrique & fertilite, 44(12), 690–700. https://doi.org/10.1016/j.gyobfe.2016.10.001

Cheng, Y., Ren, X., Hait, W. N., & Yang, J. M. (2013). Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacological reviews, 65(4), 1162–1197. https://doi.org/10.1124/pr.112.007120

Ml

Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266. https://doi.org/10.1016/j.cell.2006.01.007

Dunleavy, K., Fanale, M. A., Abramson, J. S., Noy, A., Caimi, P. F., Pittaluga, S., Parekh, S., Lacasce, A., Hayslip, J. W., Jagadeesh, D., Nagpal, S., Lechowicz, M. J., Gaur, R., Lucas, A., Melani, C., Roschewski, M., Steinberg, S. M., Jaffe, E. S., Kahl, B., Friedberg, J. W., … Wilson, W. H. (2018). Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated aggressive diffuse large B-cell lymphoma with MYC rearrangement: a prospective, multicentre, single-arm phase 2 study. The Lancet. Haematology, 5(12), e609–e617. https://doi.org/10.1016/S2352-3026(18)30177-7

Emami, F., Banstola, A., Vatanara, A., Lee, S., Kim, J. O., Jeong, J. H., & Yook, S. (2019). Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Molecular pharmaceutics, 16(3), 1184–1199. https://doi.org/10.1021/acs.molpharmaceut.8b01157

Greisen, S. R., Yan, Y., Hansen, A. S., Venø, M. T., Nyengaard, J. R., Moestrup, S. K., Hvid, M., Freeman, G. J., Kjems, J., & Deleuran, B. (2017). Extracellular Vesicles Transfer the Receptor Programmed Death-1 in Rheumatoid Arthritis. Frontiers in immunology, 8, 851. https://doi.org/10.3389/fimmu.2017.00851

Grela, E., Kozłowska, J., & Grabowiecka, A. (2018). Current methodology of MTT assay in bacteria - A review. Acta histochemica, 120(4), 303–311. https://doi.org/10.1016/j.acthis.2018.03.007

Han, J., Hong, Y., & Lee, Y. S. (2017). PD-L1 Expression and Combined Status of PD-L1/PD-1-Positive Tumor Infiltrating Mononuclear Cell Density Predict Prognosis in Glioblastoma Patients. Journal of pathology and translational medicine, 51(1), 40–48. https://doi.org/10.4132/jptm.2016.08.31

Henrik Heiland D., Haaker G., Delev D., Mercas B., Masalha W., Heynckes S., Gabelein A., Pfeifer D., Stella Carro M., Weyerbrock A., Prinz M., Schnell O. Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget. 2017; 8: 42214-42225. Retrieved from https://www.oncotarget.com/article/15031/text/

Hao, C., Chen, G., Zhao, H., Li, Y., Chen, J., Zhang, H., Li, S., Zhao, Y., Chen, F., Li, W., & Jiang, W. G. (2020). PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Frontiers in oncology, 10, 1015. https://doi.org/10.3389/fonc.2020.01015

Hazlehurst, L. A., Valkov, N., Wisner, L., Storey, J. A., Boulware, D., Sullivan, D. M., & Dalton, W. S. (2001). Reduction in drug-induced DNA double-strand breaks associated with beta1 integrin-mediated adhesion correlates with drug resistance in U937 cells. Blood, 98(6), 1897–1903. https://doi.org/10.1182/blood.v98.6.1897

Heczey, A., Louis, C. U., Savoldo, B., Dakhova, O., Durett, A., Grilley, B., Liu, H., Wu, M. F., Mei, Z., Gee, A., Mehta, B., Zhang, H., Mahmood, N., Tashiro, H., Heslop, H. E., Dotti, G., Rooney, C. M., & Brenner, M. K. (2017). CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular therapy : the journal of the American Society of Gene Therapy, 25(9), 2214–2224. https://doi.org/10.1016/j.ymthe.2017.05.012

Huet, O., Petit, J. M., Ratinaud, M. H., & Julien, R. (1992). NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry, 13(5), 532–539. https://doi.org/10.1002/cyto.990130513

Kong, F., Wang, W., Gong, L., Wu, W., & Liu, Y. (2020). Anti-PD-1 antibody camrelizumab plus doxorubicin showed durable response in pulmonary sarcomatoid carcinoma: Case report and literature review. Journal of clinical pharmacy and therapeutics, 45(6), 1489–1496. https://doi.org/10.1111/jcpt.13234

Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor protocols, 2018(6), 10.1101/pdb.prot095505. https://doi.org/10.1101/pdb.prot095505

Li, J., Liu, J., Guo, N., & Zhang, X. (2016). Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes. International journal of pharmaceutics, 511(1), 436–445. https://doi.org/10.1016/j.ijpharm.2016.07.039

Liu, Z. G., & Jiao, D. (2019). Necroptosis, tumor necrosis and tumorigenesis. Cell stress, 4(1), 1–8. https://doi.org/10.15698/cst2020.01.208

Limagne, E., Thibaudin, M., Nuttin, L., Spill, A., Derangère, V., Fumet, J. D., Amellal, N., Peranzoni, E., Cattan, V., & Ghiringhelli, F. (2019). Trifluridine/Tipiracil plus Oxaliplatin Improves PD-1 Blockade in Colorectal Cancer by Inducing Immunogenic Cell Death and Depleting Macrophages. Cancer immunology research, 7(12), 1958–1969. https://doi.org/10.1158/2326-6066.CIR-19-0228

Lin, X., Wang, G., Liu, P., Han, L., Wang, T., Chen, K., & Gao, Y. (2021). Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation. Experimental and therapeutic medicine, 21(6), 638. https://doi.org/10.3892/etm.2021.10070

Lobner D. (2000). Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis?. Journal of neuroscience methods, 96(2), 147–152. https://doi.org/10.1016/s0165-0270(99)00193-4

Mohapatra, P., Preet, R., Das, D., Satapathy, S. R., Choudhuri, T., Wyatt, M. D., & Kundu, C. N. (2012). Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism. Oncology research, 20(2-3), 81–91. https://doi.org/10.3727/096504012x13473664562628

Otani, Y., Mori, K., Morikawa, N., Mizutani, M., Yasojima, H., Masuyama, M., Mano, M., & Masuda, N. (2021). Rechallenge of anti-PD-1/PD-L1 antibody showed a good response to metastatic breast cancer: a case report. Immunotherapy, 13(3), 189–194. https://doi.org/10.2217/imt-2020-0242

Ouassaf, M., Belaidi, S., Chtita, S., Lanez, T., Abul Qais, F., & Md Amiruddin, H. (2021). Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. Journal of biomolecular structure & dynamics, 1–10. Advance online publication. https://doi.org/10.1080/07391102.2021.1957712

Peng, S., Wang, R., Zhang, X., Ma, Y., Zhong, L., Li, K., Nishiyama, A., Arai, S., Yano, S., & Wang, W. (2019). EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Molecular cancer, 18(1), 165. https://doi.org/10.1186/s12943-019-1073-4

Poeschel, V., Held, G., Ziepert, M., Witzens-Harig, M., Holte, H., Thurner, L., Borchmann, P., Viardot, A., Soekler, M., Keller, U., Schmidt, C., Truemper, L., Mahlberg, R., Marks, R., Hoeffkes, H. G., Metzner, B., Dierlamm, J., Frickhofen, N., Haenel, M., Neubauer, A., … German Lymphoma Alliance (2019). Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER): a randomised, phase 3, non-inferiority trial. Lancet (London, England), 394(10216), 2271–2281. https://doi.org/10.1016/S0140-6736(19)33008-9

Rezaei-Seresht, H., Cheshomi, H., Falanji, F., Movahedi-Motlagh, F., Hashemian, M., & Mireskandari, E. (2019). Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna journal of phytomedicine, 9(6), 574–586. https://doi.org/10.22038/AJP.2019.13475

Romejko-Jarosińska, J., Dąbrowska-Iwanicka, A., Gruszecka, B., Jamrozek-Jedlińska, M., Borawska, A., Hołda, W., Porowska, A., … Jurczak, W. (2020). First-line R-CVP versus R-CHOP induction immunochemotherapy for indolent lymphoma with rituximab maintenance. A multicentre, phase III randomized study by the Polish Lymphoma Research Group PLRG4. British journal of haematology, 188(6), 898–906. https://doi.org/10.1111/bjh.16264

Roemer, M. G., Advani, R. H., Ligon, A. H., Natkunam, Y., Redd, R. A., Homer, H., Connelly, C. F., Sun, H. H., Daadi, S. E., Freeman, G. J., Armand, P., Chapuy, B., de Jong, D., Hoppe, R. T., Neuberg, D. S., Rodig, S. J., & Shipp, M. A. (2016). PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 34(23), 2690–2697. https://doi.org/10.1200/JCO.2016.66.4482

Samman, D., Mahdy, M., Cousha, H. S., Kamar, Z., Mohamed, K., & Gabal, H. (2021). Immunohistochemical expression of programmed death-ligand 1 and CD8 in glioblastomas. Journal of pathology and translational medicine, 55(6), 388–397. https://doi.org/10.4132/jptm.2021.08.04

Wang, Y., Liu, Y., Du, X., Ma, H., & Yao, J. (2020). Berberine Reverses Doxorubicin Resistance by Inhibiting Autophagy Through the PTEN/Akt/mTOR Signaling Pathway in Breast Cancer. OncoTargets and therapy, 13, 1909–1919. https://doi.org/10.2147/OTT.S241632

Walewski, J., Paszkiewicz-Kozik, E., Michalski, W., Rymkiewicz, G., Szpila, T., Butrym, A., Giza, A., Zaucha, J. M., Kalinka-Warzocha, E., Wieczorkiewicz, A., Zimowska-Curyło, D., Knopińska-Posłuszny, W., Tyczyńska, A.,

Wang, D., & Bao, B. (2020). Gallic Acid Impedes Non-Small Cell Lung Cancer Progression via Suppression of EGFR-Dependent CARM1-PELP1 Complex. Drug design, development and therapy, 14, 1583–1592. https://doi.org/10.2147/DDDT.S228123

Xu-Monette, Z. Y., Zhou, J., & Young, K. H. (2018). PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood, 131(1), 68–83. https://doi.org/10.1182/blood-2017-07-740993

Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current opinion in cell biology, 17(5), 559–564. https://doi.org/10.1016/j.ceb.2005.08.002

Ye, H., & Shaw, I. C. (2020). Dietary isoflavone-induced, estrogen receptor-β-mediated proliferation of Caco-2 cells is modulated by gallic acid. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 145, 111743. https://doi.org/10.1016/j.fct.2020.111743

Ying, H., Zhang, X., Duan, Y., Lao, M., Xu, J., Yang, H., Liang, T., & Bai, X. (2021). Non-cytomembrane PD-L1: An atypical target for cancer. Pharmacological research, 170, 105741. https://doi.org/10.1016/j.phrs.2021.105741

Yoshimura, S. H., Kim, J., & Takeyasu, K. (2003). On-substrate lysis treatment combined with scanning probe microscopy revealed chromosome structures in eukaryotes and prokaryotes. Journal of electron microscopy, 52(4), 415–423. https://doi.org/10.1093/jmicro/52.4.415

Zheng, C., Shen, R., Li, K., Zheng, N., Zong, Y., Ye, D., Wang, Q., Wang, Z., Chen, L., & Ma, Y. (2016). Epidermal growth factor receptor is overexpressed in neuroblastoma tissues and cells. Acta biochimica et biophysica Sinica, 48(8), 762–767. https://doi.org/10.1093/abbs/gmw064

Published

11-30-2022

How to Cite

He, H. (2022). Gallic Acid: A Viable Drug for Inducing Apoptosis to Human Neuroblastoma Cancer Cells. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3134

Issue

Section

HS Research Articles