Can COMT Val158Met Gene Polymorphism Predict Treatment Outcomes for Methylphenidates in ADHD Patients?

Authors

  • Rhea Maheshwari Conestoga High School
  • Janet Wolfe The Tredyffrin/Easttown School District

DOI:

https://doi.org/10.47611/jsrhs.v10i4.3087

Keywords:

Precision Medicine, ADHD, Pharmacogenomic, COMT

Abstract

The COMT gene encodes for the Catechol-O-methyltransferase (COMT) enzyme, an enzyme responsible for the breakdown of dopamine and norepinephrine in the prefrontal cortical areas. The most common variation of the COMT gene is the Val158Met polymorphism (rs4680) which leads to a valine (Val) to methionine (Met) substitution at codon 158. It is plausible that variations in this gene may predict treatment outcomes to stimulants like methylphenidates used in the treatment of ADHD. The purpose of this study is to statistically evaluate this association to further the clinical implementation of personalized medicine. Quantitative data was collected from clinical trials where patients were genotyped for the COMT gene and were evaluated for treatment response to methylphenidates on a quantifiable scale. Correlational analysis (n=1094) showed a statistically significant association (p=0.003) between this genotype and treatment outcomes. The Odd’s ratio calculated from the binary outcomes (n=638 patients) depicted that the Val/Val carriers were 1.86 times more likely to respond positively to methylphenidate treatment compared to the Met allele carriers. Our analysis shows that variations in COMT gene can reliably predict treatment outcomes to Methylphenidates in ADHD patients. However, this association is based on the data extracted from 9 different clinical studies (n= 1094 patients). These studies had different sample sizes, ethnicities, and measurement scales which may have contributed to the heterogeneity in the overall sample data set, thereby diluting the power of the association. Nevertheless, this analysis adds to the body of pharmacogenomic evidence increasing the clinical utility of precision medicine.

Downloads

Download data is not yet available.

Author Biography

Janet Wolfe, The Tredyffrin/Easttown School District

Advisor

References or Bibliography

Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 1, 15020, doi:10.1038/nrdp.2015.20 (2015).

Danielson, M. L. et al. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J Clin Child Adolesc Psychol 47, 199-212, doi:10.1080/15374416.2017.1417860 (2018).

Brown, K. A., Samuel, S. & Patel, D. R. Pharmacologic management of attention deficit hyperactivity disorder in children and adolescents: a review for practitioners. Transl Pediatr 7, 36-47, doi:10.21037/tp.2017.08.02 (2018).

Mathur, S. & Sutton, J. Personalized medicine could transform healthcare. Biomed Rep 7, 3-5, doi:10.3892/br.2017.922 (2017).

MedlinePlus. (NIH National Library of Medicine, 2021).

Lytras MD, P. P. Applying Big Data Analytics in BioInformatics and Medicine. (IGI Global, 2018).

Fruehwirth M, D. R., Folha RD. Reaseach Gate, Fecha de publicacion (2015).

Adams, J. U. Pharmacogenomics and personalized medicine. Nature Education 1.1, 194 (2008).

Del Campo, N., Chamberlain, S. R., Sahakian, B. J. & Robbins, T. W. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 69, e145-157, doi:10.1016/j.biopsych.2011.02.036 (2011).

Felt BT, B. B., Christner JG, et al. Diagnosis and Management of ADHD in Children. Am Fam Physician 90, 456-464 (2014).

M, S. S. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. . (Cambridge University Press, 2013).

Sun, H., Yuan, F., Shen, X., Xiong, G. & Wu, J. Role of COMT in ADHD: a systematic meta-analysis. Mol Neurobiol 49, 251-261, doi:10.1007/s12035-013-8516-5 (2014).

Srivastava, K. et al. Effect of Catechol-O-Methyltransferase Genotype Polymorphism on Neurological and Psychiatric Disorders: Progressing Towards Personalized Medicine. Cureus 13, e18311, doi:10.7759/cureus.18311 (2021).

Rothe C, K. D., Bradwejn J, et al. Association of the Val158Met Catechol O-Methyltransferase Genetic Polymorphism with Panic Disorder. Neuropsychopharmacology 31, 2237-2242 (2006).

Lachman, H. M. et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6, 243-250, doi:10.1097/00008571-199606000-00007 (1996).

Chen, J. et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75, 807-821, doi:10.1086/425589 (2004).

C, S. Stress and the Brain: How Genetics Affects whether you are more likely to wilt under pressure, 2020).

Hain, D. T. et al. Review and Meta-analysis on the Impact of the ADRA2A Variant rs1800544 on Methylphenidate Outcomes in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry Global Open Science 2, 106-114, doi: https://doi.org/10.1016/j.bpsgos.2021.07.009 (2022).

Wardle, M. C., Hart, A. B., Palmer, A. A. & de Wit, H. Does COMT genotype influence the effects of d-amphetamine on executive functioning? Genes Brain Behav 12, 13-20, doi:10.1111/gbb.12012 (2013).

Mattay, V. S. et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100, 6186-6191, doi:10.1073/pnas.0931309100 (2003).

Hamidovic, A., Dlugos, A., Palmer, A. A. & de Wit, H. Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatr Genet 20, 85-92, doi:10.1097/YPG.0b013e32833a1f3c (2010).

Hart, A. B., de Wit, H. & Palmer, A. A. Candidate gene studies of a promising intermediate phenotype: failure to replicate. Neuropsychopharmacology 38, 802-816, doi:10.1038/npp.2012.245 (2013).

Ilieva, I., Boland, J. & Farah, M. J. Objective and subjective cognitive enhancing effects of mixed amphetamine salts in healthy people. Neuropharmacology 64, 496-505, doi:10.1016/j.neuropharm.2012.07.021 (2013).

E, W. T. Mechanism of Action of Agents Used in Attention-Deficit/Hyperactivity Disorder. J Clin Psychiatry 67, 32-37 (2006).

Kereszturi, E. et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet 147b, 1431-1435, doi:10.1002/ajmg.b.30704 (2008).

Cheon, K. A., Jun, J. Y. & Cho, D. Y. Association of the catechol-O-methyltransferase polymorphism with methylphenidate response in a classroom setting in children with attention-deficit hyperactivity disorder. Int Clin Psychopharmacol 23, 291-298, doi:10.1097/YIC.0b013e328306a977 (2008).

Park, S. et al. Catechol-O-methyltransferase Val158-Met polymorphism and a response of hyperactive-impulsive symptoms to methylphenidate: A replication study from South Korea. J Psychopharmacol 28, 671-676, doi:10.1177/0269881114527654 (2014).

Contini, V. et al. No significant association between genetic variants in 7 candidate genes and response to methylphenidate treatment in adult patients with ADHD. J Clin Psychopharmacol 32, 820-823, doi:10.1097/JCP.0b013e318270e727 (2012).

Unal, D., Unal, M. F., Alikasifoglu, M. & Cetinkaya, A. Genetic Variations in Attention Deficit Hyperactivity Disorder Subtypes and Treatment Resistant Cases. Psychiatry Investig 13, 427-433, doi:10.4306/pi.2016.13.4.427 (2016).

Yatsuga, C. et al. No association between catechol-O-methyltransferase (COMT) genotype and attention deficit hyperactivity disorder (ADHD) in Japanese children. Brain Dev 36, 620-625, doi:10.1016/j.braindev.2013.08.006 (2014).

Salatino-Oliveira, A. et al. Catechol-O-methyltransferase valine158methionine polymorphism moderates methylphenidate effects on oppositional symptoms in boys with attention-deficit/hyperactivity disorder. Biol Psychiatry 70, 216-221, doi:10.1016/j.biopsych.2011.03.025 (2011).

Sengupta, S. et al. COMT Val108/158Met polymorphism and the modulation of task-oriented behavior in children with ADHD. Neuropsychopharmacology 33, 3069-3077, doi:10.1038/npp.2008.85 (2008).

McGough, J. J. et al. A candidate gene analysis of methylphenidate response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 48, 1155-1164, doi:10.1097/CHI.0b013e3181bc72e3 (2009).

Pagerols, M. et al. Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. Pharmacogenomics J 17, 98-104, doi:10.1038/tpj.2015.89 (2017).

Dahiru, T. P - value, a true test of statistical significance? A cautionary note. Ann Ib Postgrad Med 6, 21-26, doi:10.4314/aipm.v6i1.64038 (2008).

Thiese, M. S., Ronna, B. & Ott, U. P value interpretations and considerations. J Thorac Dis 8, E928-E931, doi:10.21037/jtd.2016.08.16 (2016).

Darlington, R. B. & Hayes, A. F. Combining independent p values: extensions of the Stouffer and binomial methods. Psychol Methods 5, 496-515, doi:10.1037/1082-989x.5.4.496 (2000).

Published

11-30-2021

How to Cite

Maheshwari, R., & Wolfe, J. (2021). Can COMT Val158Met Gene Polymorphism Predict Treatment Outcomes for Methylphenidates in ADHD Patients?. Journal of Student Research, 10(4). https://doi.org/10.47611/jsrhs.v10i4.3087

Issue

Section

AP Capstone™ Research