Axions as a model of Dark Matter

Authors

  • Jordan Pefianco United World College of South East Asia

DOI:

https://doi.org/10.47611/jsrhs.v11i3.3042

Keywords:

Dark Matter, Axions, Strong CP Problem, Gravitational Lensing, Scalar Field Dark Matter, Spontaneous Symmetry Breaking

Abstract

The true nature of dark matter is an extremely important and fundamental problem in the study of astrophysics, particle physics, cosmology and many other areas within the study of physics. This paper presents experimental evidence for the existence of dark matter through discussing the experimental results of mass profiling a galaxy and gravitational lensing. The fundamental properties of dark matter are then discussed, and evidence for these properties is presented. This allows further discussion of one of the most promising models of dark matter - the axion. The purpose of this paper is to present the evidence for the axion model, describe the nature of the theoretical axion particle, and to highlight the effects this model would have on other theories in physics such as solving the Strong CP Problem in the theory of quantum chromodynamics.

Downloads

Download data is not yet available.

References or Bibliography

Saleh, G., Alizadeh, R., & Dalili, A. (2020). A New Theory to Explain the Dark Energy.

Bertone, G., & Hooper, D. (2016). FERMILAB-PUB-16-157-A A History of Dark Matter.

Wilczek, F. (1978). Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett., 40, 279–282. doi:10.1103/PhysRevLett.40.279

Garcia Irastorza, I. (2022, March 29). An introduction to axions and their detection. SciPost Physics Lecture Notes. Retrieved June 9, 2022, from https://doi.org/10.21468%2Fscipostphyslectnotes.45

Rubin, V. C., & Ford, J., W. Kent. (1970). Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. apj, 159, 379. doi:10.1086/150317

Peccei, R. D., & Quinn, H. R. (1977). Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett., 38, 1440–1443. doi:10.1103/PhysRevLett.38.1440

De Jesus, J. F., Pereira, S., Malatrasi, J. L. G., & Oliveira, F. (2016). Can dark matter be a scalar field? Journal of Cosmology and Astroparticle Physics. doi:10.1088/1475-7516/2016/08/046

Zwicky, F. (2009). Republication of: The redshift of extragalactic nebulae. General Relativity and Gravitation, 41(1), 207–224. doi:10.1007/s10714-008-0707-4

Spergel, D. N., & Steinhardt, P. J. (2000). Observational Evidence for Self-Interacting Cold Dark Matter. Physical Review Letters, 84(17), 3760–3763. doi:10.1103/physrevlett.84.3760

Clowe, D., Bradač, M. a., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. (2006). A Direct Empirical Proof of the Existence of Dark Matter. The Astrophysical Journal, 648(2), L109–L113. doi:10.1086/508162

Rubin, V. C., Ford, J., W. K., & Thonnard, N. (1978). Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa -> Sc. apjl, 225, L107–L111. doi:10.1086/182804

Brézin, É. (2021, April 30). Spontaneous symmetry breaking: édouard Brézin. Inference. Retrieved June 9, 2022, from https://inference-review.com/article/spontaneous-symmetry-breaking

Tremaine, S., & Gunn, J. E. (1979). Dynamical Role of Light Neutral Leptons in Cosmology. Phys. Rev. Lett., 42, 407–410. doi:10.1103/PhysRevLett.42.407

Published

08-31-2022

How to Cite

Pefianco, J. (2022). Axions as a model of Dark Matter. Journal of Student Research, 11(3). https://doi.org/10.47611/jsrhs.v11i3.3042

Issue

Section

HS Research Projects